Comparing charities - planned data analysis code

Setup and data loading

Loading packages (don’t touch this)

# Knit function options
knitr::opts_chunk$set(echo = TRUE, clean = TRUE)

# Downloading and installing required packages
list.of.packages <- c("tidyverse", "haven", "jmv", "ggstatsplot", "DataExplorer", "reshape2", "labelled", "grateful", "rstudioapi")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages, dependencies = TRUE)
invisible(lapply(list.of.packages, library, character.only = TRUE))
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'stringr' was built under R version 4.2.2
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
## Warning: package 'haven' was built under R version 4.2.3
## Warning: package 'ggstatsplot' was built under R version 4.2.3
## You can cite this package as:
##      Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach.
##      Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
## Warning: package 'DataExplorer' was built under R version 4.2.3
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths
## Warning: package 'labelled' was built under R version 4.2.3
## Warning: package 'grateful' was built under R version 4.2.3
## Warning: package 'rstudioapi' was built under R version 4.2.3
# Miscellaneous settings
Sys.setenv(LANG = "en")
options(scipen=999.99)
options(es.use_symbols = TRUE)

AnalyzeComparison <- function (dataset, VarName, Title, AgainstValue) {

  set.seed(513131)
  
  internaldataset <- data.frame(dataset[[VarName]])

    # print (paste ("Descriptives of", Title))
    # print ("========================")
    # 
    # print(jmv::descriptives(
    #   data = internaldataset,
    #   vars = vars(dataset..VarName..),
    #   hist = TRUE,
    #   dens = TRUE,
    #   box = TRUE,
    #   violin = TRUE,
    #   dot = TRUE,
    #   boxMean = TRUE,
    #   ci = TRUE))
    
    # print (paste("One sample t-test against",AgainstValue))
    # print ("=============================")
      
    print(jmv::ttestOneS(
        data = internaldataset,
        vars = vars(dataset..VarName..),
        testValue = AgainstValue,
        meanDiff = TRUE,
        effectSize = TRUE,
        ciES = TRUE,
        desc = TRUE,
        plots = FALSE))
    
    # print ("Plot")
    # print ("============")
    
    internaldataset$dataset..VarName.. <- as.numeric(internaldataset$dataset..VarName..)
    
    gghistostats(
      data = internaldataset,
      x = dataset..VarName..,
      xlab = "% allocation to B",
      bf.message = TRUE,
      binwidth = 10,
      title = Title,
      test.value = AgainstValue,
      point.args = list(size = 2, alpha = 0.2, 
                        position = ggplot2::position_jitterdodge(
                          jitter.width = 0.3, 
                          jitter.height = 0.3))
    )
}

Load dataset

data <- read_sav("Comparing-charities-real-data.sav") # Reading data
nrow(data)
## [1] 557
# Only those who completed the survey
data <- data[which(!is.na(data$funnel_pay)), ]
nrow(data)
## [1] 491

Overview of dataset

names(data)
##   [1] "StartDate"                  "EndDate"                   
##   [3] "Status"                     "Progress"                  
##   [5] "Duration__in_seconds_"      "Finished"                  
##   [7] "RecordedDate"               "ResponseId"                
##   [9] "RecipientLastName"          "RecipientFirstName"        
##  [11] "RecipientEmail"             "ExternalReference"         
##  [13] "DistributionChannel"        "UserLanguage"              
##  [15] "Q_RecaptchaScore"           "Q_RelevantIDDuplicate"     
##  [17] "Q_RelevantIDDuplicateScore" "Q_RelevantIDFraudScore"    
##  [19] "Q_RelevantIDLastStartDate"  "consentagree_1"            
##  [21] "outline1"                   "outline1_DO_1"             
##  [23] "outline1_DO_0"              "outline1_DO_99"            
##  [25] "outline2"                   "outline2_DO_1"             
##  [27] "outline2_DO_0"              "outline2_DO_99"            
##  [29] "native"                     "native_DO_1"               
##  [31] "native_DO_0"                "native_DO_2"               
##  [33] "copy_paste"                 "A1_1allocation"            
##  [35] "A1_1thoughts"               "A2_1allocation"            
##  [37] "A2_1thoughts"               "A3_1allocation"            
##  [39] "A3_1thoughts"               "A4_1allocation"            
##  [41] "A4_1thoughts"               "A5_1allocation"            
##  [43] "A5_1thoughts"               "A7_1allocation"            
##  [45] "A7_1thoughts"               "A8_1allocation"            
##  [47] "A8_1thoughts"               "A9_1allocation"            
##  [49] "A9_1thoughts"               "A10_1allocation"           
##  [51] "A10_1thoughts"              "A11_1allocation"           
##  [53] "A11_1thoughts"              "A12_1allocation"           
##  [55] "A12_1thoughts"              "A13_1allocation"           
##  [57] "A13_1thoughts"              "A14_1allocation"           
##  [59] "A14_1thoughts"              "A15_1allocation"           
##  [61] "A15_1thoughts"              "A16_1allocation"           
##  [63] "A16_1thoughts"              "A17_1allocation"           
##  [65] "A17_1thoughts"              "A18_1allocation"           
##  [67] "A18_1thoughts"              "A19_1allocation"           
##  [69] "A19_1thoughts"              "A20_1allocation"           
##  [71] "A20_1thoughts"              "A21_1allocation"           
##  [73] "A21_1thoughts"              "A22_1allocation"           
##  [75] "A22_1thoughts"              "A23_1allocation"           
##  [77] "A23_1thoughts"              "A24_1allocation"           
##  [79] "A24_1thoughts"              "A1_2allocation"            
##  [81] "A1_2thoughts"               "A2_2allocation"            
##  [83] "A2_2thoughts"               "A3_2allocation"            
##  [85] "A3_2thoughts"               "A4_2allocation"            
##  [87] "A4_2thoughts"               "A5_2allocation"            
##  [89] "A5_2thoughts"               "A6_2allocation"            
##  [91] "A6_2thoughts"               "A7_2allocation"            
##  [93] "A7_2thoughts"               "A8_2allocation"            
##  [95] "A8_2thoughts"               "A9_2allocation"            
##  [97] "A9_2thoughts"               "A10_2allocation"           
##  [99] "A10_2thoughts"              "A11_2allocation"           
## [101] "A11_2thoughts"              "A12_2allocation"           
## [103] "A12_2thoughts"              "A13_2allocation"           
## [105] "A13_2thoughts"              "A14_2allocation"           
## [107] "A14_2thoughts"              "A15_2allocation"           
## [109] "A15_2thoughts"              "A16_2allocation"           
## [111] "A16_2thoughts"              "A17_2allocation"           
## [113] "A17_2thoughts"              "A18_2allocation"           
## [115] "A18_2thoughts"              "A19_2allocation"           
## [117] "A19_2thoughts"              "A20_2allocation"           
## [119] "A20_2thoughts"              "A21_2allocation"           
## [121] "A21_2thoughts"              "A22_2allocation"           
## [123] "A22_2thoughts"              "A23_2allocation"           
## [125] "A23_2thoughts"              "A24_2allocation"           
## [127] "A24_2thoughts"              "A25_2allocation"           
## [129] "A25_2thoughts"              "A26_2allocation"           
## [131] "A26_2thoughts"              "A27_2allocation"           
## [133] "A27_2thoughts"              "A28_2allocation"           
## [135] "A28_2thoughts"              "A29_2allocation"           
## [137] "A29_2thoughts"              "A30_2allocation"           
## [139] "A30_2thoughts"              "A31_2allocation"           
## [141] "A31_2thoughts"              "A32_2allocation"           
## [143] "A32_2thoughts"              "A33_2allocation"           
## [145] "A33_2thoughts"              "A34_2allocation"           
## [147] "A34_2thoughts"              "A35_2allocation"           
## [149] "A35_2thoughts"              "A36_2allocation"           
## [151] "A36_2thoughts"              "A37_2allocation"           
## [153] "A37_2thoughts"              "A38_2allocation"           
## [155] "A38_2thoughts"              "A39_2allocation"           
## [157] "A39_2thoughts"              "A40_2allocation"           
## [159] "A40_2thoughts"              "A41_2allocation"           
## [161] "A41_2thoughts"              "A42_2allocation"           
## [163] "A42_2thoughts"              "A43_2allocation"           
## [165] "A43_2thoughts"              "A44_2allocation"           
## [167] "A44_2thoughts"              "A45_2allocation"           
## [169] "A45_2thoughts"              "A46_2allocation"           
## [171] "A46_2thoughts"              "A47_2allocation"           
## [173] "A47_2thoughts"              "A48_2allocation"           
## [175] "A48_2thoughts"              "A49_2allocation"           
## [177] "A49_2thoughts"              "A50_2allocation"           
## [179] "A50_2thoughts"              "A51_2allocation"           
## [181] "A51_2thoughts"              "A52_2allocation"           
## [183] "A52_2thoughts"              "A53_2allocation"           
## [185] "A53_2thoughts"              "A54_2allocation"           
## [187] "A54_2thoughts"              "A55_2allocation"           
## [189] "A55_2thoughts"              "A56_2allocation"           
## [191] "A56_2thoughts"              "A57_2allocation"           
## [193] "A57_2thoughts"              "A58_2allocation"           
## [195] "A58_2thoughts"              "A59_2allocation"           
## [197] "A59_2thoughts"              "A60_2allocation"           
## [199] "A60_2thoughts"              "A61_2allocation"           
## [201] "A61_2thoughts"              "A62_2allocation"           
## [203] "A62_2thoughts"              "A63_2allocation"           
## [205] "A63_2thoughts"              "A64_2allocation"           
## [207] "A64_2thoughts"              "A65_2allocation"           
## [209] "A65_2thoughts"              "A66_2allocation"           
## [211] "A66_2thoughts"              "A67_2allocation"           
## [213] "A67_2thoughts"              "A68_2allocation"           
## [215] "A68_2thoughts"              "A69_2allocation"           
## [217] "A69_2thoughts"              "A70_2allocation"           
## [219] "A70_2thoughts"              "A71_2allocation"           
## [221] "A71_2thoughts"              "A72_2allocation"           
## [223] "A72_2thoughts"              "A73_2allocation"           
## [225] "A73_2thoughts"              "A74_2allocation"           
## [227] "A74_2thoughts"              "A75_2allocation"           
## [229] "A75_2thoughts"              "A76_2allocation"           
## [231] "A76_2thoughts"              "A77_2allocation"           
## [233] "A77_2thoughts"              "A78_2allocation"           
## [235] "A78_2thoughts"              "A79_2allocation"           
## [237] "A79_2thoughts"              "A80_2allocation"           
## [239] "A80_2thoughts"              "A81_2allocation"           
## [241] "A81_2thoughts"              "serious"                   
## [243] "seen"                       "seen_1_TEXT"               
## [245] "funnel_purpose"             "funnel_improve"            
## [247] "age"                        "gender"                    
## [249] "origin"                     "residence"                 
## [251] "soc_class"                  "understanding"             
## [253] "politicalcat"               "politicalcat_4_TEXT"       
## [255] "politicialcont"             "funnel_pay"                
## [257] "assignmentId"               "hitId"                     
## [259] "CountryCode"                "CountryName"               
## [261] "STUDY_ID"                   "SESSION_ID"                
## [263] "PROLIFIC_PID"               "Q_BallotBoxStuffing"       
## [265] "Q_TotalDuration"            "RandomID"                  
## [267] "Block"
DataExplorer::plot_histogram(data)

Analyses: Connected scenarios with within-subject effects

Pre-registration general criteria: Alpha (p-values) = .001

Framing (H1)

Framing positive (A: Risk averse, B: Risk seeking) (H1a)

Charities A and B both save lives of those facing likely death. Donation to Charity A means a 100% certainty that 50 lives are saved for every 100 people facing likely death. Donation to Charity B means that out of 100 people facing likely death, there is a 50% chance of saving all 100 people, and a 50% chance of not saving any lives at all (0 out of 100).

H1a: In positive framing, people show a tendency towards risk aversion (<50).

AnalyzeComparison(data, "A1_1allocation", "Framing positive", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -11.19965    114.0000    < .0000001          -24.52174    Cohen's d      -1.044373    -1.270322    -0.8153955   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    25.47826    20.00000    23.47987    2.189509   
##  ─────────────────────────────────────────────────────────────────────────────

Framing negative (A: Risk averse, B: Risk seeking) (H1b)

Charities A and B both prevent lives lost of those facing likely death. Donation to Charity A means a 100% certainty that 50 lives are lost for every 100 people facing likely death. Donation to Charity B means that out of 100 people facing likely death, there is a 50% chance of no lives (0 out of 100) lost at all, and a 50% chance of losing all 100 people.

H1b: In negative framing, people show a tendency towards risk seeking (>50).

AnalyzeComparison(data, "A2_1allocation", "Framing negative", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -4.419079    114.0000    0.0000227          -11.47826    Cohen's d     -0.4120812    -0.6016635    -0.2208288   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    38.52174    50.00000    27.85437    2.597433   
##  ─────────────────────────────────────────────────────────────────────────────

Framing positive vs. negative (H1a+b)

H1a+b: Those in negative framing show a stronger tendency towards risk seeking than those in positive framing.

jmv::anovaRM(
    data = data,
    rm = list(
        list(
            label="Framing",
            levels=c(
                "Positive framing",
                "Negative framing"))),
    rmCells = list(
        list(
            measure="A1_1allocation",
            cell="Positive framing"),
        list(
            measure="A2_1allocation",
            cell="Negative framing")),
    effectSize = c("eta", "partEta"),
    depLabel = "% allocation to B",
    rmTerms = ~ Framing,
    postHoc = list(
        "Framing"),
    emMeans = ~ Framing,
    emmTables = TRUE,
    emmPlotData = TRUE,
    groupSumm = TRUE)
## Warning: attributes are not identical across measure variables; they will be
## dropped
## 
##  REPEATED MEASURES ANOVA
## 
##  Within Subjects Effects                                                                                 
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F           p            η²           η²-p        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Framing           9782.609      1      9782.6087    21.60546    0.0000091    0.0607314    0.1593259   
##    Residual         51617.391    114       452.7841                                                      
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  Between Subjects Effects                                                                         
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F    p            η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Residual          99680.00    114       874.3860                                               
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  POST HOC TESTS
## 
##  Post Hoc Comparisons - Framing                                                                                     
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Framing                  Framing             Mean Difference    SE          df          t            p-tukey     
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Positive framing    -    Negative framing          -13.04348    2.806155    114.0000    -4.648167    0.0000091   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  ESTIMATED MARGINAL MEANS
## 
##  FRAMING
## 
##  Estimated Marginal Means - Framing                                   
##  ──────────────────────────────────────────────────────────────────── 
##    Framing             Mean        SE          Lower       Upper      
##  ──────────────────────────────────────────────────────────────────── 
##    Positive framing    25.47826    2.189509    21.14086    29.81566   
##    Negative framing    38.52174    2.597433    33.37624    43.66723   
##  ──────────────────────────────────────────────────────────────────── 
## 
## 
##  Group Summary            
##  ──────────────────────── 
##         N      Excluded   
##  ──────────────────────── 
##         115         376   
##  ────────────────────────

data_framing <- data.frame(data$A1_1allocation,
                            data$A2_1allocation)
colnames(data_framing) <- c("Positive framing", "Negative framing")
data_framing_mod <- melt(data_framing)
## No id variables; using all as measure variables
## Warning: attributes are not identical across measure variables; they will be
## dropped
data_framing_mod <- data.frame(data_framing_mod)
data_framing_mod <- na.omit(data_framing_mod)
data_framing_mod <- remove_labels(data_framing_mod)

ggwithinstats(
  data = data_framing_mod,
  x = variable,
  y = value,
  xlab = "Framing",
  ylab = "% allocation to B",
  plot.type = "boxviolin",
  title = "Framing: positive vs. negative",
  point.args = list(size = 3, alpha = 0.2, position =
                      ggplot2::position_jitterdodge(jitter.width = 0.4,
                                                    jitter.height = 3)),
  ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
  type = "parametric"
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

Effort (H2)

Picnic (H2a)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Imagine that a donation of $1,000 or more to Charity A requires that you attend their events with relaxed and enjoyable picnic for fundraising where attendees can enjoy food, games, and music. A donation to Charity B does not require you to attend any events. You have $2,000 to allocate between the two charities.

H2a: People prefer donations without additional obligations over donations attending relaxing events.

AnalyzeComparison(data, "A3_1allocation", "Effort: Picnic", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     6.561382    114.0000    < .0000001           18.78261    Cohen's d      0.6118521    0.4114706    0.8099565   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    68.78261    60.00000    30.69796    2.862599   
##  ─────────────────────────────────────────────────────────────────────────────

10 mile (H2b)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Imagine that a donation of $1,000 or more to Charity A requires that you attend their challenging 10 mile (16 kilometers) charity run. A donation to Charity B does not require you to attend any events. You have $2,000 to allocate between the two charities.

H2b: People prefer donations without additional obligations over donations attending highly effortful events.

AnalyzeComparison(data, "A4_1allocation", "Effort: 10 mile", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper      
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     10.55408    114.0000    < .0000001           29.73913    Cohen's d      0.9841735    0.7597888    1.205593   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    79.73913    100.0000    30.21737    2.817784   
##  ─────────────────────────────────────────────────────────────────────────────

1 mile (H2c)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Imagine that a donation of $1,000 or more to Charity A requires that you attend their symbolic 1 mile (1.6 kilometers) charity run. A donation to Charity B does not require you to attend any events. You have $2,000 to allocate between the two charities.

H2c: People prefer donations without additional obligations over donations attending mildly effortful events.

AnalyzeComparison(data, "A5_1allocation", "Effort: 1 mile", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper      
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     9.666723    114.0000    < .0000001           26.43478    Cohen's d      0.9014266    0.6830574    1.116940   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    76.43478    100.0000    29.32550    2.734617   
##  ─────────────────────────────────────────────────────────────────────────────

Compare all Effort conditions (H2a+b+c)

H2a+b+c (common sense): Preferences will be H2a (relaxing) >=~ H2c (mild effortful) >=~ H2b (highly effortful). H2a+b+c (Alternative: Martyrdom-Effect): Preferences will be H2a (relaxing) ~=< H2c (mild effortful) ~=< H2b (highly effortful).

jmv::anovaRM(
    data = data,
    rm = list(
        list(
            label="Effort",
            levels=c("Picnic", "10 mile", "1 mile"))),
    rmCells = list(
        list(
            measure="A3_1allocation",
            cell="Picnic"),
        list(
            measure="A4_1allocation",
            cell="10 mile"),
        list(
            measure="A5_1allocation",
            cell="1 mile")),
    effectSize = c("eta", "partEta"),
    depLabel = "% allocation to B",
    rmTerms = ~ Effort,
    postHoc = list(
        "Effort"),
    emMeans = ~ Effort,
    emmTables = TRUE,
    emmPlotData = TRUE,
    groupSumm = TRUE)
## Warning: attributes are not identical across measure variables; they will be
## dropped
## 
##  REPEATED MEASURES ANOVA
## 
##  Within Subjects Effects                                                                                 
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F           p            η²           η²-p        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Effort            7264.928      2      3632.4638    7.827865    0.0005153    0.0229304    0.0642535   
##    Residual        105801.739    228       464.0427                                                      
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  Between Subjects Effects                                                                         
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F    p            η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Residual          203758.3    114       1787.353                                               
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  POST HOC TESTS
## 
##  Post Hoc Comparisons - Effort                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Effort          Effort     Mean Difference    SE          df          t            p-tukey     
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Picnic     -    10 mile         -10.956522    3.177855    114.0000    -3.447773    0.0022709   
##               -    1 mile           -7.652174    2.941926    114.0000    -2.601077    0.0281764   
##    10 mile    -    1 mile            3.304348    2.336073    114.0000     1.414489    0.3368568   
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  ESTIMATED MARGINAL MEANS
## 
##  EFFORT
## 
##  Estimated Marginal Means - Effort                           
##  ─────────────────────────────────────────────────────────── 
##    Effort     Mean        SE          Lower       Upper      
##  ─────────────────────────────────────────────────────────── 
##    Picnic     68.78261    2.862599    63.11182    74.45340   
##    10 mile    79.73913    2.817784    74.15712    85.32114   
##    1 mile     76.43478    2.734617    71.01753    81.85204   
##  ─────────────────────────────────────────────────────────── 
## 
## 
##  Group Summary            
##  ──────────────────────── 
##         N      Excluded   
##  ──────────────────────── 
##         115         376   
##  ────────────────────────

data_effort <- data.frame(data$A3_1allocation,
                            data$A4_1allocation,
                           data$A5_1allocation)
colnames(data_effort) <- c("Picnic", "10 mile", "1 mile")
data_effort_mod <- melt(data_effort)
## No id variables; using all as measure variables
## Warning: attributes are not identical across measure variables; they will be
## dropped
data_effort_mod <- data.frame(data_effort_mod)
data_effort_mod <- na.omit(data_effort_mod)
data_effort_mod <- remove_labels(data_effort_mod)

ggwithinstats(
  data = data_effort_mod,
  x = variable,
  y = value,
  xlab = "Effort",
  ylab = "% allocation to B",
  plot.type = "boxviolin",
  title = "Effort: Picnic vs. 10 mile vs. 1 mile",
  point.args = list(size = 3, alpha = 0.2, position =
                      ggplot2::position_jitterdodge(jitter.width = 0.4,
                                                    jitter.height = 3)),
  ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
  type = "parametric"
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

Target: All children, orphan children, and animals (H3)

All children vs. orphans (H3a)

Charities A and B are both charities that provide food, shelter, and medication. Charity A aims to provide that aid to all children in need, regardless of their background. Charity B aims to provide that aid to orphan children in need.

H3a: People prefer to donate to orphans over donating to all children.

AnalyzeComparison(data, "A7_1allocation", "Children: all versus orphan", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -3.283144    114.0000    0.0013634          -8.000000    Cohen's d     -0.3061547    -0.4925415    -0.1184848   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    42.00000    50.00000    26.13058    2.436689   
##  ─────────────────────────────────────────────────────────────────────────────

Children vs. animals (H3b)

Charities A and B are both charities that provide food, shelter, and medication. Charity A aims to provide that aid to children in need. Charity B aims to provide that aid to animals in need.

H3b: Children > animals (<50)

AnalyzeComparison(data, "A8_1allocation", "Children versus animals", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -9.348769    114.0000    < .0000001          -22.69565    Cohen's d     -0.8717772    -1.085267    -0.6554767   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    27.30435    20.00000    26.03377    2.427662   
##  ─────────────────────────────────────────────────────────────────────────────

Target: Comparing all conditions (H3a+b)

H3a+b: Effect for H3b >=~ H3a.

jmv::anovaRM(
    data = data,
    rm = list(
        list(
            label="Target",
            levels=c(
                "All children vs. orphans",
                "Children vs. animals"))),
    rmCells = list(
        list(
            measure="A7_1allocation",
            cell="All children vs. orphans"),
        list(
            measure="A8_1allocation",
            cell="Children vs. animals")),
    effectSize = c("eta", "partEta"),
    depLabel = "% allocation to B",
    rmTerms = ~ Target,
    postHoc = list(
        "Target"),
    emMeans = ~ Target,
    emmTables = TRUE,
    emmPlotData = TRUE,
    groupSumm = TRUE)
## Warning: attributes are not identical across measure variables; they will be
## dropped
## 
##  REPEATED MEASURES ANOVA
## 
##  Within Subjects Effects                                                                                 
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F           p            η²           η²-p        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Target            12417.83      1     12417.8261    20.38871    0.0000155    0.0741265    0.1517144   
##    Residual          69432.17    114       609.0542                                                      
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  Between Subjects Effects                                                                         
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F    p            η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Residual          85672.17    114       751.5103                                               
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  POST HOC TESTS
## 
##  Post Hoc Comparisons - Target                                                                                                 
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Target                           Target                  Mean Difference    SE          df          t           p-tukey     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    All children vs. orphans    -    Children vs. animals           14.69565    3.254573    114.0000    4.515385    0.0000155   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  ESTIMATED MARGINAL MEANS
## 
##  TARGET
## 
##  Estimated Marginal Means - Target                                            
##  ──────────────────────────────────────────────────────────────────────────── 
##    Target                      Mean        SE          Lower       Upper      
##  ──────────────────────────────────────────────────────────────────────────── 
##    All children vs. orphans    42.00000    2.436689    37.17294    46.82706   
##    Children vs. animals        27.30435    2.427662    22.49517    32.11353   
##  ──────────────────────────────────────────────────────────────────────────── 
## 
## 
##  Group Summary            
##  ──────────────────────── 
##         N      Excluded   
##  ──────────────────────── 
##         115         376   
##  ────────────────────────

data_childrenanimals <- data.frame(data$A7_1allocation,
                            data$A8_1allocation)
colnames(data_childrenanimals) <- c("Children: all versus orphan", "Children versus animals")
data_childrenanimals_mod <- melt(data_childrenanimals)
## No id variables; using all as measure variables
## Warning: attributes are not identical across measure variables; they will be
## dropped
data_childrenanimals_mod <- data.frame(data_childrenanimals_mod)
data_childrenanimals_mod <- na.omit(data_childrenanimals_mod)
data_childrenanimals_mod <- remove_labels(data_childrenanimals_mod)

ggwithinstats(
  data = data_childrenanimals_mod,
  x = variable,
  y = value,
  xlab = "Target",
  ylab = "% allocation to B",
  plot.type = "boxviolin",
  title = "Target: Comparing conditions",
  point.args = list(size = 3, alpha = 0.2, position =
                      ggplot2::position_jitterdodge(jitter.width = 0.4,
                                                    jitter.height = 3)),
  ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
  type = "parametric"
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

Singularity: number of victims and gender (H4)

1 boy versus 2 children (H4a)

Charity A is seeking donations to support Jeremiah, a little boy, facing the threat of starvation, and donations are used to directly support him for him to achieve adequate living standards. Charity B is seeking donations for Tanaya and Eliah, two little children, a girl and a boy. The two of them are facing the threat of starvation, and donations are used to directly support them for them to achieve adequate living standards.

H4a (IVE): People donate more to the 1 boy compared to 2 children (<50) H4a (IVE reframed): People donate the same to the 1 boy compared to 2 children (~50 null) H4a (IVE equal): People donate the same to all 3 children (~66.6, null)

AnalyzeComparison(data, "A9_1allocation", "1 boy versus 2 children (against 50)", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper      
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     8.831203    114.0000    < .0000001           14.52174    Cohen's d      0.8235139    0.6104784    1.033818   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    64.52174    70.00000    17.63387    1.644367   
##  ─────────────────────────────────────────────────────────────────────────────

AnalyzeComparison(data, "A9_1allocation", "1 boy versus 2 children (IVE equal - against 66)", 66)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic     df          p            Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -0.8989847    114.0000    0.3705557          -1.478261    Cohen's d    -0.08383075    -0.2667382    0.09944275   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 66
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    64.52174    70.00000    17.63387    1.644367   
##  ─────────────────────────────────────────────────────────────────────────────

1 girl versus 2 children

Charity A is seeking donations to support Rokia, a little girl, facing the threat of starvation, and donations are used to directly support her for her to achieve adequate living standards. Charity B is seeking donations for Tanaya and Eliah, two little children, a girl and a boy. The two of them are facing the threat of starvation, and donations are used to directly support them for them to achieve adequate living standards.

H4a (IVE): People donate more to the 1 boy compared to 2 children (<50) H4a (IVE reframed): People donate the same to the 1 boy compared to 2 children (~50 null) H4a (IVE equal): People donate the same to all 3 children (~66.6, null)

AnalyzeComparison(data, "A10_1allocation", "1 girl versus 2 children (against 50)", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     8.226799    114.0000    < .0000001           14.52174    Cohen's d      0.7671530    0.5577562    0.9739188   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    64.52174    60.00000    18.92939    1.765175   
##  ─────────────────────────────────────────────────────────────────────────────

AnalyzeComparison(data, "A10_1allocation", "1 girl versus 2 children (IVE equal - against 66)", 66)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic     df          p            Mean difference                 Effect Size    Lower         Upper       
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -0.8374586    114.0000    0.4040871          -1.478261    Cohen's d    -0.07809341    -0.2609722    0.1051244   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 66
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    64.52174    60.00000    18.92939    1.765175   
##  ─────────────────────────────────────────────────────────────────────────────

1 boy versus 3 children (H4b)

Charity A is seeking donations to support Jeremiah, a little boy, facing the threat of starvation, and donations are used to directly support him for him to achieve adequate living standards. Charity B is seeking donations for Tanaya, Eliah, and Mika, three little children, two girls and a boy. The three of them are facing the threat of starvation, and donations are used to directly support them for them to achieve adequate living standards.

H4b (IVE): People donate more to the 1 boy compared to 3 children (<50) H4b (IVE reframed): People donate the same to the 1 boy compared to 3 children (~50 null) H4b (IVE equal): People donate the same to all 4 children (~75, null)

AnalyzeComparison(data, "A11_1allocation", "1 boy versus 3 children (against 50)", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper      
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     11.35297    114.0000    < .0000001           20.17391    Cohen's d       1.058670    0.8285776    1.285718   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    70.17391    70.00000    19.05590    1.776972   
##  ─────────────────────────────────────────────────────────────────────────────

AnalyzeComparison(data, "A11_1allocation", "1 boy versus 3 children (IVE equal - against 75)", 75)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper         
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -2.715905    114.0000    0.0076390          -4.826087    Cohen's d     -0.2532594    -0.4384150    -0.06702774   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 75
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    70.17391    70.00000    19.05590    1.776972   
##  ─────────────────────────────────────────────────────────────────────────────

1 girl versus 3 children

Charity A is seeking donations to support Rokia, a little girl, facing the threat of starvation, and donations are used to directly support her for her to achieve adequate living standards. Charity B is seeking donations for Tanaya, Eliah, and Mika, three little children, two girls and a boy. The three of them are facing the threat of starvation, and donations are used to directly support them for them to achieve adequate living standards.

H4b (IVE): People donate more to the 1 boy compared to 3 children (<50) H4b (IVE reframed): People donate the same to the 1 boy compared to 3 children (~50 null) H4b (IVE equal): People donate the same to all 4 children (~75, null)

AnalyzeComparison(data, "A12_1allocation", "1 girl versus 3 children (against 50)", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper      
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     10.48236    114.0000    < .0000001           18.95652    Cohen's d      0.9774850    0.7535954    1.198416   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    68.95652    70.00000    19.39316    1.808421   
##  ─────────────────────────────────────────────────────────────────────────────

AnalyzeComparison(data, "A12_1allocation", "1 girl versus 3 children (IVE equal - against 75)", 75)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -3.341853    114.0000    0.0011260          -6.043478    Cohen's d     -0.3116294    -0.4981576    -0.1237973   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 75
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    68.95652    70.00000    19.39316    1.808421   
##  ─────────────────────────────────────────────────────────────────────────────

Compare all IVE conditions

Combined predictions

H4a+b (IVE): 1 child > 2 children > 3 children H4a+b (Scope insensitivity): 1 child ~= 2 children ~= 3 children (null)

jmv::anovaRM(
    data = data,
    rm = list(
        list(
            label="1-2 vs. 1-3",
            levels=c("1 vs. 2", "1 vs. 3")),
        list(
            label="1 child gender",
            levels=c("Boy", "Girl"))),
    rmCells = list(
        list(
            measure="A9_1allocation",
            cell=c("1 vs. 2", "Boy")),
        list(
            measure="A10_1allocation",
            cell=c("1 vs. 2", "Girl")),
        list(
            measure="A11_1allocation",
            cell=c("1 vs. 3", "Boy")),
        list(
            measure="A12_1allocation",
            cell=c("1 vs. 3", "Girl"))),
    effectSize = c("eta", "partEta"),
    depLabel = "% allocation to B",
    rmTerms = ~ `1 child gender` + `1-2 vs. 1-3` + `1 child gender`:`1-2 vs. 1-3`,
    postHoc = list(
        "1 child gender",
        "1-2 vs. 1-3"),
    emMeans = ~ `1 child gender`:`1-2 vs. 1-3`,
    emmTables = TRUE,
    emmPlotData = TRUE,
    groupSumm = TRUE)
## Warning: attributes are not identical across measure variables; they will be
## dropped
## 
##  REPEATED MEASURES ANOVA
## 
##  Within Subjects Effects                                                                                                     
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                  Sum of Squares    df     Mean Square    F             p            η²           η²-p        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    1 child gender                      42.60870      1       42.60870     0.4202844    0.5180988    0.0002605    0.0036732   
##    Residual                         11557.39130    114      101.38063                                                        
##    1-2 vs. 1-3                       2925.21739      1     2925.21739    26.1041454    0.0000013    0.0178826    0.1863196   
##    Residual                         12774.78261    114      112.05950                                                        
##    1 child gender:1-2 vs. 1-3          42.60870      1       42.60870     0.7640542    0.3839004    0.0002605    0.0066576   
##    Residual                          6357.39130    114       55.76659                                                        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  Between Subjects Effects                                                                         
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F    p            η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Residual          129879.1    114       1139.291                                               
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  POST HOC TESTS
## 
##  Post Hoc Comparisons - 1 child gender                                                                           
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    1 child gender         1 child gender    Mean Difference    SE           df          t            p-tukey     
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Boy               -    Girl                    0.6086957    0.9389199    114.0000    0.6482935    0.5180988   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  Post Hoc Comparisons - 1-2 vs. 1-3                                                                        
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    1-2 vs. 1-3         1-2 vs. 1-3    Mean Difference    SE           df          t            p-tukey     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    1 vs. 2        -    1 vs. 3              -5.043478    0.9871324    114.0000    -5.109222    0.0000013   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  ESTIMATED MARGINAL MEANS
## 
##  1 CHILD GENDER:1-2 VS. 1-3
## 
##  Estimated Marginal Means - 1 child gender:1-2 vs. 1-3                             
##  ───────────────────────────────────────────────────────────────────────────────── 
##    1-2 vs. 1-3    1 child gender    Mean        SE          Lower       Upper      
##  ───────────────────────────────────────────────────────────────────────────────── 
##    1 vs. 2        Boy               64.52174    1.644367    61.26426    67.77922   
##                   Girl              64.52174    1.765175    61.02494    68.01854   
##    1 vs. 3        Boy               70.17391    1.776972    66.65375    73.69408   
##                   Girl              68.95652    1.808421    65.37405    72.53899   
##  ───────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  Group Summary            
##  ──────────────────────── 
##         N      Excluded   
##  ──────────────────────── 
##         115         376   
##  ────────────────────────

data_IVE <- data.frame(data$A9_1allocation,
                            data$A10_1allocation,
                           data$A11_1allocation,
                          data$A12_1allocation)
colnames(data_IVE) <- c("1 boy versus 2 children",
                        "1 girl versus 2 children",
                        "1 boy versus 3 children",
                        "1 girl versus 3 children")
data_IVE_mod <- melt(data_IVE)
## No id variables; using all as measure variables
## Warning: attributes are not identical across measure variables; they will be
## dropped
data_IVE_mod <- data.frame(data_IVE_mod)
data_IVE_mod <- na.omit(data_IVE_mod)
data_IVE_mod <- remove_labels(data_IVE_mod)

ggwithinstats(
  data = data_IVE_mod,
  x = variable,
  y = value,
  xlab = "IVE",
  ylab = "% allocation to B",
  plot.type = "boxviolin",
  title = "Compare all IVE conditions",
  point.args = list(size = 3, alpha = 0.2, position =
                      ggplot2::position_jitterdodge(jitter.width = 0.4,
                                                    jitter.height = 3)),
  ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
  type = "parametric"
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

Children vs. animals vs. trees (H5)

10 animals 1 child (H5a1)

Charities A and B are charities operating in the Amazon rain-forest. Charity A focuses on helping endangered animals and can save 10 endangered animals for every $2,000 donated. Charity B focuses on helping children at risk and can save 1 child for every $2,000 donated. Imagine that you have $20,000 to allocate between the two charities.

H5a1: People prefer 1 child over 10 animals (>50)

(Note: The pre-registration had an oversight and wrote “<50” yet Charity B is the one with the 1 child, so correted to “>50”)

AnalyzeComparison(data, "A13_1allocation", "10 animals 1 child", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     6.047613    114.0000    < .0000001           17.39130    Cohen's d      0.5639429    0.3660186    0.7597194   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    67.39130    70.00000    30.83877    2.875730   
##  ─────────────────────────────────────────────────────────────────────────────

10 animals 10 children (H5a2)

Charities A and B are charities operating in the Amazon rain-forest. Charity A focuses on helping endangered animals and can save 10 endangered animals for every $2,000 donated. Charity B focuses on helping children at risk and can save 10 children for every $2,000 donated. Imagine that you have $20,000 to allocate between the two charities.

H5a2: People prefer 10 children over 10 animals (>50)

(Note a deviation: In the pre-registration there was an oversight written “<50” but given that Charity B is the one with children is should be “>50”. )

AnalyzeComparison(data, "A14_1allocation", "10 animals 10 children", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper      
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     9.355908    114.0000    < .0000001           22.52174    Cohen's d      0.8724429    0.6560971    1.085977   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    72.52174    80.00000    25.81457    2.407221   
##  ─────────────────────────────────────────────────────────────────────────────

100 animals 1 child (H5a3)

Charities A and B are charities operating in the Amazon rain-forest. Charity A focuses on helping endangered animals and can save 100 endangered animals for every $2,000 donated. Charity B focuses on helping children at risk and can save 1 child for every $2,000 donated. Imagine that you have $20,000 to allocate between the two charities.

H5a3: People prefer 1 child over 100 animals (>50)

(Note a deviation: In the pre-registration there was an oversight written “<50” but given that Charity B is the one with children is should be “>50”. )

AnalyzeComparison(data, "A15_1allocation", "100 animals 1 child", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     3.812892    114.0000    0.0002233           11.91304    Cohen's d      0.3555540    0.1663254    0.5433112   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    61.91304    70.00000    33.50558    3.124412   
##  ─────────────────────────────────────────────────────────────────────────────

1 animal 10 trees (H5b1)

Charities A and B are charities operating in the Amazon rain-forest. Charity A focuses on helping endangered animals and can save 1 endangered animal for every $2,000 donated. Charity B focuses on saving endangered trees from being cut down and can save 10 endangered trees for every $2,000 donated. Imagine that you have $20,000 to allocate between the two charities.

H5b1: People prefer 1 animal over 10 trees

AnalyzeComparison(data, "A16_1allocation", "1 animal 10 trees", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic     df          p            Mean difference                 Effect Size    Lower         Upper       
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -0.4015364    114.0000    0.6887770         -0.9565217    Cohen's d    -0.03744346    -0.2201937    0.1454734   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    49.04348    50.00000    25.54576    2.382154   
##  ─────────────────────────────────────────────────────────────────────────────

1 animal 1000 trees (H5b2)

Charities A and B are charities operating in the Amazon rain-forest. Charity A focuses on helping endangered animals and can save 1 endangered animal for every $2,000 donated. Charity B focuses on saving endangered trees from being cut down and can save 1,000 endangered trees for every $2,000 donated. Imagine that you have $20,000 to allocate between the two charities.

H5b2: People prefer 1 animal over 1000 trees

AnalyzeComparison(data, "A17_1allocation", "1 animal 1000 trees", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     2.317340    114.0000    0.0222703           6.782609    Cohen's d      0.2160931    0.03072732    0.4005333   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    56.78261    50.00000    31.38744    2.926894   
##  ─────────────────────────────────────────────────────────────────────────────

Comparing all conditions

H5a+b: children > animals > trees

jmv::anovaRM(
    data = data,
    rm = list(
        list(
            label="Target",
            levels=c(
                "10 animals 1 child",
                "10 animals 10 children",
                "100 animals 1 child",
                "1 animal 10 trees",
                "1 animal 1000 trees"))),
    rmCells = list(
        list(
            measure="A13_1allocation",
            cell="10 animals 1 child"),
        list(
            measure="A14_1allocation",
            cell="10 animals 10 children"),
        list(
            measure="A15_1allocation",
            cell="100 animals 1 child"),
        list(
            measure="A16_1allocation",
            cell="1 animal 10 trees"),
        list(
            measure="A17_1allocation",
            cell="1 animal 1000 trees")),
    effectSize = c("eta", "partEta"),
    depLabel = "% allocation to B",
    rmTerms = ~ Target,
    postHoc = list(
        "Target"),
    emMeans = ~ Target,
    emmTables = TRUE,
    emmPlotData = TRUE,
    groupSumm = TRUE)
## Warning: attributes are not identical across measure variables; they will be
## dropped
## 
##  REPEATED MEASURES ANOVA
## 
##  Within Subjects Effects                                                                                  
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F           p             η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Target            38383.65      4      9595.9130    15.98522    < .0000001    0.0714177    0.1229772   
##    Residual         273736.35    456       600.2990                                                       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  Between Subjects Effects                                                                         
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F    p            η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Residual          225333.2    114       1976.607                                               
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  POST HOC TESTS
## 
##  Post Hoc Comparisons - Target                                                                                                   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Target                         Target                    Mean Difference    SE          df          t            p-tukey      
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    10 animals 1 child        -    10 animals 10 children          -5.130435    2.079155    114.0000    -2.467557     0.1054105   
##                              -    100 animals 1 child              5.478261    2.104238    114.0000     2.603441     0.0764497   
##                              -    1 animal 10 trees               18.347826    3.792744    114.0000     4.837613     0.0000404   
##                              -    1 animal 1000 trees             10.608696    3.981818    114.0000     2.664285     0.0657985   
##    10 animals 10 children    -    100 animals 1 child             10.608696    2.248101    114.0000     4.718959     0.0000658   
##                              -    1 animal 10 trees               23.478261    3.117441    114.0000     7.531262    < .0000001   
##                              -    1 animal 1000 trees             15.739130    3.293571    114.0000     4.778743     0.0000515   
##    100 animals 1 child       -    1 animal 10 trees               12.869565    3.959685    114.0000     3.250149     0.0129231   
##                              -    1 animal 1000 trees              5.130435    4.288180    114.0000     1.196413     0.7534328   
##    1 animal 10 trees         -    1 animal 1000 trees             -7.739130    2.392018    114.0000    -3.235397     0.0135154   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  ESTIMATED MARGINAL MEANS
## 
##  TARGET
## 
##  Estimated Marginal Means - Target                                          
##  ────────────────────────────────────────────────────────────────────────── 
##    Target                    Mean        SE          Lower       Upper      
##  ────────────────────────────────────────────────────────────────────────── 
##    10 animals 1 child        67.39130    2.875730    61.69451    73.08810   
##    10 animals 10 children    72.52174    2.407221    67.75305    77.29043   
##    100 animals 1 child       61.91304    3.124412    55.72361    68.10248   
##    1 animal 10 trees         49.04348    2.382154    44.32445    53.76251   
##    1 animal 1000 trees       56.78261    2.926894    50.98445    62.58076   
##  ────────────────────────────────────────────────────────────────────────── 
## 
## 
##  Group Summary            
##  ──────────────────────── 
##         N      Excluded   
##  ──────────────────────── 
##         115         376   
##  ────────────────────────

data_type <- data.frame(data$A13_1allocation,
                            data$A14_1allocation,
                           data$A15_1allocation,
                          data$A16_1allocation,
                          data$A17_1allocation)
colnames(data_type) <- c("10 animals 1 child", 
                         "10 animals 10 children", 
                         "100 animals 1 child", 
                         "1 animal 10 trees", 
                         "1 animal 1000 trees")
data_type_mod <- melt(data_type)
## No id variables; using all as measure variables
## Warning: attributes are not identical across measure variables; they will be
## dropped
data_type_mod <- data.frame(data_type_mod)
data_type_mod <- na.omit(data_type_mod)
data_type_mod <- remove_labels(data_type_mod)

ggwithinstats(
  data = data_type_mod,
  x = variable,
  y = value,
  xlab = "Children vs. animals vs. trees",
  ylab = "% allocation to B",
  plot.type = "boxviolin",
  title = "Comparing all conditions",
  point.args = list(size = 3, alpha = 0.2, position =
                      ggplot2::position_jitterdodge(jitter.width = 0.4,
                                                    jitter.height = 3)),
  ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
  type = "parametric"
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

Certainty (H6)

  • H6a - equivalent net outcome, medium risk.
  • H6b - different net outcomes, high reward for risk.
  • H6c - equivalent net outcome, high risk.
  • H6d - different net outcomes, small reward for risk.

10 save 100% vs. 20 save 50% (H6a) - equivalent net outcome, medium risk.

Charities A and B both save lives. Per each $2,000 spent, Charity A saves 10 people with absolute certainty (100%). Per each $2,000 spent, Charity B has a 50% chance of saving 20 people, and a 50% chance of not saving any lives at all (0). Imagine that you have $20,000 to allocate between the two charities.

H6a: Risk aversion (<50)

AnalyzeComparison(data, "A18_1allocation", "10 save 100% vs. 20 save 50%", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -17.25422    114.0000    < .0000001          -30.60870    Cohen's d      -1.608964    -1.884676    -1.330003   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    19.39130    20.00000    19.02385    1.773983   
##  ─────────────────────────────────────────────────────────────────────────────

10 save 100% vs. 20 save 80% (H6b) - different net outcomes, high reward for risk.

Charities A and B both save lives. Per each $2,000 spent, Charity A saves 10 people with absolute certainty (100%). Per each $2,000 spent, Charity B has an 80% chance of saving 20 people, and a 20% chance of not saving any lives at all (0). Imagine that you have $20,000 to allocate between the two charities.

H6b: Risk aversion (<50)

AnalyzeComparison(data, "A19_1allocation", "10 save 100% vs. 20 save 80%", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -4.894709    114.0000    0.0000033          -13.73913    Cohen's d     -0.4564340    -0.6476353    -0.2634139   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    36.26087    40.00000    30.10102    2.806935   
##  ─────────────────────────────────────────────────────────────────────────────

1 save 100% vs. 10 save 10% (H6c) - equivalent net outcome, high risk.

Charities A and B both save lives. Per each $2,000 spent, Charity A saves 1 person with absolute certainty (100%). Per each $2,000 spent, Charity B has a 10% chance of saving 10 people, and 90% chance of saving no people at all (0). Imagine that you have $20,000 to allocate between the two charities.

H6c: Risk aversion (<50)

AnalyzeComparison(data, "A20_1allocation", "1 save 100% vs. 10 save 10%", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -16.14295    114.0000    < .0000001          -33.21739    Cohen's d      -1.505338    -1.771095    -1.236334   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    16.78261    0.000000    22.06640    2.057702   
##  ─────────────────────────────────────────────────────────────────────────────

75 save 100% vs. 100 save 80% (H6d) - different net outcomes, small reward for risk.

Charities A and B both save lives. Per each $2,000 spent, Charity A saves 75 people with absolute certainty (100%). Per each $2,000 spent, Charity B has an 80% chance of saving 100 people, and a 20% chance of not saving any lives at all (0). Imagine that you have $20,000 to allocate between the two charities.

H6d: Risk aversion (<50)

AnalyzeComparison(data, "A21_1allocation", "75 save 100% vs. 100 save 80%", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -10.21071    114.0000    < .0000001          -24.26087    Cohen's d     -0.9521540    -1.171245    -0.7301365   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    25.73913    20.00000    25.47998    2.376021   
##  ─────────────────────────────────────────────────────────────────────────────

Comparing all conditions H6

Exploratory(not pre-registered): Note: Difficult to compare all the four conditions

H6a < H6b

jmv::anovaRM(
    data = data,
    rm = list(
        list(
            label="Certainty",
            levels=c(
                "10 save 100% vs. 20 save 50%",
                "10 save 100% vs. 20 save 80%",
                "1 save 100% vs. 10 save 10%",
                "75 save 100% vs. 100 save 80%"))),
    rmCells = list(
        list(
            measure="A18_1allocation",
            cell="10 save 100% vs. 20 save 50%"),
        list(
            measure="A19_1allocation",
            cell="10 save 100% vs. 20 save 80%"),
        list(
            measure="A20_1allocation",
            cell="1 save 100% vs. 10 save 10%"),
        list(
            measure="A21_1allocation",
            cell="75 save 100% vs. 100 save 80%")),
    effectSize = c("eta", "partEta"),
    depLabel = "% allocation to B",
    rmTerms = ~ Certainty,
    postHoc = list(
        "Certainty"),
    emMeans = ~ Certainty,
    emmTables = TRUE,
    emmPlotData = TRUE,
    groupSumm = TRUE)
## Warning: attributes are not identical across measure variables; they will be
## dropped
## 
##  REPEATED MEASURES ANOVA
## 
##  Within Subjects Effects                                                                                   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                 Sum of Squares    df     Mean Square    F           p             η²           η²-p        
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Certainty          25932.83      3      8644.2754    22.26292    < .0000001    0.0864416    0.1633821   
##    Residual          132792.17    342       388.2812                                                       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  Between Subjects Effects                                                                         
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F    p            η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Residual          141279.1    114       1239.291                                               
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  POST HOC TESTS
## 
##  Post Hoc Comparisons - Certainty                                                                                                            
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Certainty                            Certainty                        Mean Difference    SE          df          t            p-tukey     
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    10 save 100% vs. 20 save 50%    -    10 save 100% vs. 20 save 80%          -16.869565    2.806675    114.0000    -6.010516    0.0000001   
##                                    -    1 save 100% vs. 10 save 10%             2.608696    1.913806    114.0000     1.363093    0.5250276   
##                                    -    75 save 100% vs. 100 save 80%          -6.347826    1.812451    114.0000    -3.502343    0.0036395   
##    10 save 100% vs. 20 save 80%    -    1 save 100% vs. 10 save 10%            19.478261    3.343638    114.0000     5.825469    0.0000003   
##                                    -    75 save 100% vs. 100 save 80%          10.521739    3.045156    114.0000     3.455238    0.0042467   
##    1 save 100% vs. 10 save 10%     -    75 save 100% vs. 100 save 80%          -8.956522    2.288744    114.0000    -3.913290    0.0008837   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  ESTIMATED MARGINAL MEANS
## 
##  CERTAINTY
## 
##  Estimated Marginal Means - Certainty                                              
##  ───────────────────────────────────────────────────────────────────────────────── 
##    Certainty                        Mean        SE          Lower       Upper      
##  ───────────────────────────────────────────────────────────────────────────────── 
##    10 save 100% vs. 20 save 50%     19.39130    1.773983    15.87706    22.90555   
##    10 save 100% vs. 20 save 80%     36.26087    2.806935    30.70035    41.82139   
##    1 save 100% vs. 10 save 10%      16.78261    2.057702    12.70632    20.85890   
##    75 save 100% vs. 100 save 80%    25.73913    2.376021    21.03225    30.44601   
##  ───────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  Group Summary            
##  ──────────────────────── 
##         N      Excluded   
##  ──────────────────────── 
##         115         376   
##  ────────────────────────

data_certainty <- data.frame(data$A18_1allocation,
                           data$A19_1allocation,
                            data$A20_1allocation,
                           data$A21_1allocation)
colnames(data_certainty) <- c("10 save 100% vs. 20 save 50%",
                            "10 save 100% vs. 20 save 80%",
                           "1 save 100% vs. 10 save 10%", 
                           "75 save 100% vs. 100 save 80%")
data_certainty_mod <- melt(data_certainty)
## No id variables; using all as measure variables
## Warning: attributes are not identical across measure variables; they will be
## dropped
data_certainty_mod <- data.frame(data_certainty_mod)
data_certainty_mod <- na.omit(data_certainty_mod)
data_certainty_mod <- remove_labels(data_certainty_mod)

ggwithinstats(
  data = data_certainty_mod,
  x = variable,
  y = value,
  xlab = "Certainty",
  ylab = "% allocation to B",
  plot.type = "boxviolin",
  title = "Comparing all conditions",
  point.args = list(size = 3, alpha = 0.2, position =
                      ggplot2::position_jitterdodge(jitter.width = 0.4,
                                                    jitter.height = 3)),
  ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
  type = "parametric"
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

Risks (H7)

5 save 100% vs. 5000 save 0.1%

Charities A and B both save lives. Per each $2,000 spent, Charity A save 5 people with absolute certainty (100%). Per each $2,000 spent, Charity B has a 0.1% chance (1 in 1000) of saving 5,000 people, and a 99.9% chance of not saving any lives at all (0). Imagine that you have $20,000 to allocate between the two charities.

H7a: Risk aversion (<50)

AnalyzeComparison(data, "A22_1allocation", "Risk: 5 save 100% vs. 5000 save 0.1%", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -19.13485    114.0000    < .0000001          -36.86957    Cohen's d      -1.784334    -2.077532    -1.487905   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    13.13043    0.000000    20.66293    1.926828   
##  ─────────────────────────────────────────────────────────────────────────────

5 save 100% vs. 500 save 1%

Charities A and B both save lives. Per each $2,000 spent, Charity A saves 5 people with absolute certainty (100%). Per each $2,000 spent, Charity B has a 1% chance (1 in 100) of saving 500 people, and a 99% chance of not saving any lives at all (0). Imagine that you have $20,000 to allocate between the two charities.

H7b: Risk aversion (<50)

AnalyzeComparison(data, "A23_1allocation", "Risk: 5 save 100% vs. 500 save 1%", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -24.07189    114.0000    < .0000001          -38.78261    Cohen's d      -2.244715    -2.586793    -1.899526   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    11.21739    0.000000    17.27730    1.611116   
##  ─────────────────────────────────────────────────────────────────────────────

5 save 100% vs. 50 save 10%

Charities A and B both save lives. Per each $2,000 spent, Charity A saves 5 people with absolute certainty (100%). Per each $2,000 spent, Charity B has a 10% (1 in 10) chance of saving 50 people, and a 90% chance of not saving any lives at all (0). Imagine that you have $20,000 to allocate between the two charities.

H7c: Risk aversion (<50)

AnalyzeComparison(data, "A24_1allocation", "Risk: 5 save 100% vs. 50 save 10%", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -18.39822    114.0000    < .0000001          -33.47826    Cohen's d      -1.715643    -2.001904    -1.426144   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    115    16.52174    10.00000    19.51353    1.819646   
##  ─────────────────────────────────────────────────────────────────────────────

Risk: Comparing all conditions H7

H7a+b+c: H7a > H7b > H7c

jmv::anovaRM(
    data = data,
    rm = list(
        list(
            label="Risk",
            levels=c(
                "5 save 100% vs. 5000 save 0.1%",
                "5 save 100% vs. 500 save 1%",
                "5 save 100% vs. 50 save 10%"))),
    rmCells = list(
        list(
            measure="A22_1allocation",
            cell="5 save 100% vs. 5000 save 0.1%"),
        list(
            measure="A23_1allocation",
            cell="5 save 100% vs. 500 save 1%"),
        list(
            measure="A24_1allocation",
            cell="5 save 100% vs. 50 save 10%")),
    effectSize = c("eta", "partEta"),
    depLabel = "% allocation to B",
    rmTerms = ~ Risk,
    postHoc = list(
        "Risk"),
    emMeans = ~ Risk,
    emmTables = TRUE,
    emmPlotData = TRUE,
    groupSumm = TRUE)
## Warning: attributes are not identical across measure variables; they will be
## dropped
## 
##  REPEATED MEASURES ANOVA
## 
##  Within Subjects Effects                                                                                 
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F           p            η²           η²-p        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Risk              1659.710      2       829.8551    5.446326    0.0048916    0.0129897    0.0455964   
##    Residual         34740.290    228       152.3697                                                      
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  Between Subjects Effects                                                                         
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F    p            η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Residual          91371.01    114       801.5001                                               
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  POST HOC TESTS
## 
##  Post Hoc Comparisons - Risk                                                                                                                 
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Risk                                   Risk                           Mean Difference    SE          df          t            p-tukey     
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    5 save 100% vs. 5000 save 0.1%    -    5 save 100% vs. 500 save 1%           1.913043    1.595645    114.0000     1.198916    0.4562648   
##                                      -    5 save 100% vs. 50 save 10%          -3.391304    1.852234    114.0000    -1.830927    0.1641601   
##    5 save 100% vs. 500 save 1%       -    5 save 100% vs. 50 save 10%          -5.304348    1.404590    114.0000    -3.776440    0.0007393   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  ESTIMATED MARGINAL MEANS
## 
##  RISK
## 
##  Estimated Marginal Means - Risk                                                     
##  ─────────────────────────────────────────────────────────────────────────────────── 
##    Risk                              Mean        SE          Lower        Upper      
##  ─────────────────────────────────────────────────────────────────────────────────── 
##    5 save 100% vs. 5000 save 0.1%    13.13043    1.926828     9.313404    16.94747   
##    5 save 100% vs. 500 save 1%       11.21739    1.611116     8.025783    14.40900   
##    5 save 100% vs. 50 save 10%       16.52174    1.819646    12.917033    20.12644   
##  ─────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  Group Summary            
##  ──────────────────────── 
##         N      Excluded   
##  ──────────────────────── 
##         115         376   
##  ────────────────────────

data_chances <- data.frame(data$A22_1allocation,
                            data$A23_1allocation,
                           data$A24_1allocation)
colnames(data_chances) <- c("5 save 100% vs. 5000 save 0.1%",
                            "5 save 100% vs. 500 save 1%", 
                            "5 save 100% vs. 50 save 10%")
data_chances_mod <- melt(data_chances)
## No id variables; using all as measure variables
## Warning: attributes are not identical across measure variables; they will be
## dropped
data_chances_mod <- data.frame(data_chances_mod)
data_chances_mod <- na.omit(data_chances_mod)
data_chances_mod <- remove_labels(data_chances_mod)

ggwithinstats(
  data = data_chances_mod,
  x = variable,
  y = value,
  xlab = "Risk",
  ylab = "% allocation to B",
  plot.type = "boxviolin",
  title = "Risk: Comparing all conditions",
  point.args = list(size = 3, alpha = 0.2, position =
                      ggplot2::position_jitterdodge(jitter.width = 0.4,
                                                    jitter.height = 3)),
  ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
  type = "parametric"
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

H6+H7

Comparing all conditions H6+H7

jmv::anovaRM(
    data = data,
    rm = list(
        list(
            label="Certainty",
            levels=c(
                "10 save 100% vs. 20 save 50%",
                "10 save 100% vs. 20 save 80%",
                "1 save 100% vs. 10 save 10%",
                "75 save 100% vs. 100 save 80%",
                "5 save 100% vs. 5000 save 0.1%",
                "5 save 100% vs. 500 save 1%",
                "5 save 100% vs. 50 save 10%"))),
    rmCells = list(
        list(
            measure="A18_1allocation",
            cell="10 save 100% vs. 20 save 50%"),
        list(
            measure="A19_1allocation",
            cell="10 save 100% vs. 20 save 80%"),
        list(
            measure="A20_1allocation",
            cell="1 save 100% vs. 10 save 10%"),
        list(
            measure="A21_1allocation",
            cell="75 save 100% vs. 100 save 80%"),
        list(
            measure="A22_1allocation",
            cell="5 save 100% vs. 5000 save 0.1%"),
        list(
            measure="A23_1allocation",
            cell="5 save 100% vs. 500 save 1%"),
        list(
            measure="A24_1allocation",
            cell="5 save 100% vs. 50 save 10%")),
    effectSize = c("eta", "partEta"),
    depLabel = "% allocation to B",
    rmTerms = ~ Certainty,
    postHoc = list(
        "Certainty"),
    emMeans = ~ Certainty,
    emmTables = TRUE,
    emmPlotData = TRUE,
    groupSumm = TRUE)
## Warning: attributes are not identical across measure variables; they will be
## dropped
## 
##  REPEATED MEASURES ANOVA
## 
##  Within Subjects Effects                                                                                   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                 Sum of Squares    df     Mean Square    F           p             η²           η²-p        
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Certainty          51102.36      6      8517.0600    27.47432    < .0000001    0.1132375    0.1942001   
##    Residual          212040.50    684       310.0007                                                       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  Between Subjects Effects                                                                         
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##                Sum of Squares    df     Mean Square    F    p            η²           η²-p        
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Residual          188142.1    114       1650.369                                               
##  ──────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Type 3 Sums of Squares
## 
## 
##  POST HOC TESTS
## 
##  Post Hoc Comparisons - Certainty                                                                                                                 
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Certainty                              Certainty                         Mean Difference    SE          df          t             p-tukey      
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    10 save 100% vs. 20 save 50%      -    10 save 100% vs. 20 save 80%          -16.8695652    2.806675    114.0000    -6.0105159     0.0000005   
##                                      -    1 save 100% vs. 10 save 10%             2.6086957    1.913806    114.0000     1.3630930     0.8200320   
##                                      -    75 save 100% vs. 100 save 80%          -6.3478261    1.812451    114.0000    -3.5023429     0.0114273   
##                                      -    5 save 100% vs. 5000 save 0.1%          6.2608696    1.954716    114.0000     3.2029567     0.0284280   
##                                      -    5 save 100% vs. 500 save 1%             8.1739130    1.631977    114.0000     5.0085945     0.0000409   
##                                      -    5 save 100% vs. 50 save 10%             2.8695652    1.561186    114.0000     1.8380670     0.5254785   
##    10 save 100% vs. 20 save 80%      -    1 save 100% vs. 10 save 10%            19.4782609    3.343638    114.0000     5.8254692     0.0000011   
##                                      -    75 save 100% vs. 100 save 80%          10.5217391    3.045156    114.0000     3.4552382     0.0132605   
##                                      -    5 save 100% vs. 5000 save 0.1%         23.1304348    3.378862    114.0000     6.8456288    < .0000001   
##                                      -    5 save 100% vs. 500 save 1%            25.0434783    3.125579    114.0000     8.0124287    < .0000001   
##                                      -    5 save 100% vs. 50 save 10%            19.7391304    3.123350    114.0000     6.3198588     0.0000001   
##    1 save 100% vs. 10 save 10%       -    75 save 100% vs. 100 save 80%          -8.9565217    2.288744    114.0000    -3.9132905     0.0028840   
##                                      -    5 save 100% vs. 5000 save 0.1%          3.6521739    1.765551    114.0000     2.0685750     0.3783874   
##                                      -    5 save 100% vs. 500 save 1%             5.5652174    1.898216    114.0000     2.9318148     0.0602381   
##                                      -    5 save 100% vs. 50 save 10%             0.2608696    1.875047    114.0000     0.1391269     0.9999994   
##    75 save 100% vs. 100 save 80%     -    5 save 100% vs. 5000 save 0.1%         12.6086957    2.411158    114.0000     5.2293110     0.0000159   
##                                      -    5 save 100% vs. 500 save 1%            14.5217391    2.037945    114.0000     7.1256787    < .0000001   
##                                      -    5 save 100% vs. 50 save 10%             9.2173913    2.164648    114.0000     4.2581470     0.0008218   
##    5 save 100% vs. 5000 save 0.1%    -    5 save 100% vs. 500 save 1%             1.9130435    1.595645    114.0000     1.1989158     0.8932486   
##                                      -    5 save 100% vs. 50 save 10%            -3.3913043    1.852234    114.0000    -1.8309268     0.5302268   
##    5 save 100% vs. 500 save 1%       -    5 save 100% vs. 50 save 10%            -5.3043478    1.404590    114.0000    -3.7764399     0.0046313   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  ESTIMATED MARGINAL MEANS
## 
##  CERTAINTY
## 
##  Estimated Marginal Means - Certainty                                                
##  ─────────────────────────────────────────────────────────────────────────────────── 
##    Certainty                         Mean        SE          Lower        Upper      
##  ─────────────────────────────────────────────────────────────────────────────────── 
##    10 save 100% vs. 20 save 50%      19.39130    1.773983    15.877057    22.90555   
##    10 save 100% vs. 20 save 80%      36.26087    2.806935    30.700353    41.82139   
##    1 save 100% vs. 10 save 10%       16.78261    2.057702    12.706316    20.85890   
##    75 save 100% vs. 100 save 80%     25.73913    2.376021    21.032252    30.44601   
##    5 save 100% vs. 5000 save 0.1%    13.13043    1.926828     9.313404    16.94747   
##    5 save 100% vs. 500 save 1%       11.21739    1.611116     8.025783    14.40900   
##    5 save 100% vs. 50 save 10%       16.52174    1.819646    12.917033    20.12644   
##  ─────────────────────────────────────────────────────────────────────────────────── 
## 
## 
##  Group Summary            
##  ──────────────────────── 
##         N      Excluded   
##  ──────────────────────── 
##         115         376   
##  ────────────────────────

data_h6h7 <- data.frame(data$A18_1allocation,
                           data$A19_1allocation,
                            data$A20_1allocation,
                           data$A21_1allocation,
                           data$A22_1allocation,
                            data$A23_1allocation,
                           data$A24_1allocation)
colnames(data_h6h7) <- c(  "10 save 100% vs. 20 save 50%",
                           "10 save 100% vs. 20 save 80%",
                           "1 save 100% vs. 10 save 10%", 
                           "75 save 100% vs. 100 save 80%",
                           "5 save 100% vs. 5000 save 0.1%",
                           "5 save 100% vs. 500 save 1%", 
                           "5 save 100% vs. 50 save 10%")
data_h6h7_mod <- melt(data_h6h7)
## No id variables; using all as measure variables
## Warning: attributes are not identical across measure variables; they will be
## dropped
data_h6h7_mod <- data.frame(data_h6h7_mod)
data_h6h7_mod <- na.omit(data_h6h7_mod)
data_h6h7_mod <- remove_labels(data_h6h7_mod)

ggwithinstats(
  data = data_h6h7_mod,
  x = variable,
  y = value,
  xlab = "Risk",
  ylab = "% allocation to B",
  plot.type = "boxviolin",
  title = "Risk: Comparing all conditions",
  point.args = list(size = 3, alpha = 0.2, position =
                      ggplot2::position_jitterdodge(jitter.width = 0.4,
                                                    jitter.height = 3)),
  ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
  type = "parametric"
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

Analyses: Individual scenarios

Pre-registration general criteria: Alpha (p-values) = .001

Tax deduction (H11)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Donations to Charity A do not qualify for tax deductions, donations to Charity B qualify for tax deductions.

H11: tax deduction > no tax deduction (>50) (Note: corrected mistake in the pre-registration: that had “tax deducation > tax deducation (>50)” )

AnalyzeComparison(data, "A1_2allocation", "Tax deduction", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     5.558755    118.0000    0.0000002           14.62185    Cohen's d      0.5095702    0.3175640    0.6996572   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    119    64.62185    60.00000    28.69447    2.630418   
##  ─────────────────────────────────────────────────────────────────────────────

Common in region (H12)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A addresses causes of death more common in your region of residence. Charity B addresses causes of death that are less common in your region of residence.

H12: Common in region > less common in region (<50)

AnalyzeComparison(data, "A2_2allocation", "Common in region", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -6.883978    95.00000    < .0000001          -13.95833    Cohen's d     -0.7025931    -0.9246322    -0.4775600   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    96    36.04167    40.00000    19.86688    2.027655   
##  ────────────────────────────────────────────────────────────────────────────

Norms (H13)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). You learn that 80% of the people who donated in your city donated to Charity A, whereas only 20% of the people who donated in your city donated to Charity B.

H13: 80% in city > 20% in city (<50)

AnalyzeComparison(data, "A3_2allocation", "Norms", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     4.269553    105.0000    0.0000431           11.03774    Cohen's d      0.4146957    0.2153442    0.6122251   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    106    61.03774    60.00000    26.61647    2.585220   
##  ─────────────────────────────────────────────────────────────────────────────

Treatment vs. Preventive (H14)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent) addressing the same disease. Charity A aims to treat patients who have already been infected by the disease. Charity B aims to vaccinate people to prevent people from contracting the disease, being severely affected by the disease, or dying from the disease in the future.

H14: Treatment > Preventive (<50)

AnalyzeComparison(data, "A4_2allocation", "Treatment vs. Preventive", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower          Upper       
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     1.014457    118.0000    0.3124403           2.352941    Cohen's d     0.09299513    -0.08726066    0.2728566   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    119    52.35294    50.00000    25.30177    2.319409   
##  ─────────────────────────────────────────────────────────────────────────────

Information/Updates (H15)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is a registered charity that provides public weekly updates regarding its activities on their website and issues public annual reports of their impact and progress. Charity B is a registered charity that provides weekly updates regarding its activities and annual reports, yet only to donors and monitoring government agencies.

H15: With information updates > without updates (<50)

AnalyzeComparison(data, "A5_2allocation", "Information/Updates", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -7.416740    104.0000    < .0000001          -16.28571    Cohen's d     -0.7237997    -0.9374357    -0.5073796   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    105    33.71429    40.00000    22.50031    2.195805   
##  ─────────────────────────────────────────────────────────────────────────────

Well established vs. New (H16)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A funds the latest approved drugs on the market using the latest developments, which may or may not be more effective than the commonly used drugs. Charity B funds the use of the commonly used drugs that are well-established and have been shown to be moderately effective.

Competing (exploratory) H16a: Well established > Latest development (>50) H16b: Well established < Latest development (<50)

AnalyzeComparison(data, "A6_2allocation", "Well established vs. New", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     4.339680    105.0000    0.0000329           10.28302    Cohen's d      0.4215070    0.2218811    0.6192868   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    106    60.28302    50.00000    24.39584    2.369534   
##  ─────────────────────────────────────────────────────────────────────────────

Optimism (H17)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A’s describes the victims it supports as sad and feeling pessimistic about having a better future. Charity B describes the victims it supports as sad yet optimistic about having a better future.

H17: Optimistic > Pessimistic (>50)

(Note: pre-registration had an oversight, optimistic is Charity B and therefore should be >50 and not <50)

AnalyzeComparison(data, "A7_2allocation", "Optimistism", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     3.235016    120.0000    0.0015718           6.528926    Cohen's d      0.2940924    0.1114912    0.4755186   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    121    56.52893    50.00000    22.20025    2.018205   
##  ─────────────────────────────────────────────────────────────────────────────

Neglectedness (H18)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A addresses a problem that is also being addressed by 100 other charities. Charity B addresses a problem that no other charity currently addresses.

H18: Neglectedness > Common (>50)

AnalyzeComparison(data, "A8_2allocation", "Neglectedness", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower       Upper      
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     13.39866    85.00000    < .0000001           33.60465    Cohen's d       1.444815    1.139849    1.745451   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    86    83.60465    90.00000    23.25879    2.508060   
##  ────────────────────────────────────────────────────────────────────────────

Gender (H19)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A targets helping female victims. Charity B targets helping male victims.

H19: Females > Males (<50)

AnalyzeComparison(data, "A9_2allocation", "Gender", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -5.741107    116.0000    < .0000001          -10.17094    Cohen's d     -0.5307655    -0.7233749    -0.3361439   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    117    39.82906    50.00000    19.16277    1.771599   
##  ─────────────────────────────────────────────────────────────────────────────

Charity message f raming (H20)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A states in its campaign that “With your donation, children’s lives will be saved.” Charity B states in its campaign that “Without your donation, children’s lives will be lost”.

H20: Negative > Positive (>50)

AnalyzeComparison(data, "A10_2allocation", "Framing", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -6.658706    105.0000    < .0000001          -13.96226    Cohen's d     -0.6467507    -0.8549277    -0.4360061   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    106    36.03774    50.00000    21.58832    2.096843   
##  ─────────────────────────────────────────────────────────────────────────────

Recency (H21)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A aims to save refugees yet does not specify where the refugees are from. Charity B aims to save refugees from the most recent unfolding crisis you saw broadcast on the media.

H21: Recency > Unspecified (>50)

AnalyzeComparison(data, "A11_2allocation", "Recency", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     3.775019    107.0000    0.0002631           8.796296    Cohen's d      0.3632514    0.1676898    0.5572143   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    108    58.79630    50.00000    24.21545    2.330133   
##  ─────────────────────────────────────────────────────────────────────────────

Direct cash transfer vs. supplies (H22)

Charities A and B both help impoverished families in developing countries improve their lives. Charity A transfers the cash you donated directly to the identified and verified families in need. Charity B provides food and medicine supplies (worth the same amount as what you donated) to the identified and verified families in need.

H22: Supplies > Direct cash transfer (>50)

AnalyzeComparison(data, "A12_2allocation", "Direct cash transfer vs. supplies", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     3.631807    105.0000    0.0004371           10.18868    Cohen's d      0.3527523    0.1557208    0.5482030   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    106    60.18868    50.00000    28.88338    2.805402   
##  ─────────────────────────────────────────────────────────────────────────────

Food vs. Textbooks (H23)

Charities A and B both aim to help children. Charity A provides food. Charity B provides school textbooks.

H23: Food > textbooks (<50)

AnalyzeComparison(data, "A13_2allocation", "Food vs. Textbooks", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -8.395500    113.0000    < .0000001          -16.31579    Cohen's d     -0.7863106    -0.9951625    -0.5747687   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    114    33.68421    30.00000    20.74980    1.943397   
##  ─────────────────────────────────────────────────────────────────────────────

Promotion (H24)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A does not actively seek donations. Charity B actively seeks donations through various approaches (i.e., promotion booths, door-to-door, online media, campaigns, etc.).

H24: No promotion > Promotion (<50)

AnalyzeComparison(data, "A14_2allocation", "Promotion", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -3.719050    117.0000    0.0003085          -8.644068    Cohen's d     -0.3423663    -0.5273498    -0.1559976   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    118    41.35593    50.00000    25.24801    2.324268   
##  ─────────────────────────────────────────────────────────────────────────────

Subscription (H25)

Charities A and B both save the lives of 5 children with $1,200 each year. Charity A accepts donations using single payments of $1,200. Charity B accepts donations using an annual monthly subscription model, with a payment of $100 each month for a period of one year ($1,200 total). Assume zero inflation throughout the year and that subscriptions end after one year. Imagine that you have $12,000 (10 donations of $1,200) to allocate between the two charities.

H25: One payment > Subscription (<50)

AnalyzeComparison(data, "A15_2allocation", "Subscription", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                        
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic      df          p            Mean difference                 Effect Size     Lower         Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -0.03746371    94.00000    0.9701947         -0.1052632    Cohen's d    -0.003843696    -0.2049224    0.1972554   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    95    49.89474    50.00000    27.38592    2.809736   
##  ────────────────────────────────────────────────────────────────────────────

H25 (reversed): One payment < Subscription (<50)

(not pre-registered, just for presentation purposes)

Calculating a new reversed variable and rerunning the analysis.

data$A15_2allocation_recorded = 100 - data$A15_2allocation
AnalyzeComparison(data, "A15_2allocation_recorded", "Subscription", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic     df          p            Mean difference                 Effect Size    Lower         Upper       
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    0.03746371    94.00000    0.9701947          0.1052632    Cohen's d    0.003843696    -0.1972554    0.2049224   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    95    50.10526    50.00000    27.38592    2.809736   
##  ────────────────────────────────────────────────────────────────────────────

Proportion 1 Refugee camp (H26)

Charities A and B both have the means to save 1,000 lives of those in refugee camps in a third-world country, yet each charity can only help one refugee camp. Charity A saves 1,000 lives in refugee camp of 10,000 people. Charity B saves 1,000 people in a refugee camp with 1,000,000 people.

H26: High proportion (Smaller camp) > Low proportion (Larger camp) (<50)

AnalyzeComparison(data, "A16_2allocation", "Proportion 1 Refugee camp ", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper         
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -2.708163    97.00000    0.0079977          -6.326531    Cohen's d     -0.2735658    -0.4745701    -0.07120322   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    98    43.67347    50.00000    23.12618    2.336097   
##  ────────────────────────────────────────────────────────────────────────────

US vs. Africa (H27)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A aims to save lives in your home country. Charity B aims to saves lives in Africa.

H27: Ingroup > Outgroup (<50)

AnalyzeComparison(data, "A17_2allocation", "US vs. Africa", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -6.203711    109.0000    < .0000001          -15.09091    Cohen's d     -0.5915007    -0.7930040    -0.3876735   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    110    34.90909    40.00000    25.51292    2.432561   
##  ─────────────────────────────────────────────────────────────────────────────

Personal relevance: Loved ones (H28)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A aims to help those suffering from a disease that one of your loved ones is suffering from. Charity B aims to help those suffering from a disease that no one you know suffers from.

H28: Personal relevance > No relevance (<50)

AnalyzeComparison(data, "A18_2allocation", "Personal relevance: Loved ones", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -9.787078    105.0000    < .0000001          -21.50943    Cohen's d     -0.9506050    -1.178648    -0.7193891   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    106    28.49057    30.00000    22.62710    2.197738   
##  ─────────────────────────────────────────────────────────────────────────────

Personal relevance: Own risk (H29)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A aims to help those suffering from a disease that you are considered to be at high risk of suffering from, whereas Charity B aims to help those suffering from a disease that as far as you know is of no risk to you.

H29: Personal relevance > No relevance (<50)

AnalyzeComparison(data, "A19_2allocation", "Personal relevance: Own risk", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -8.800745    93.00000    < .0000001          -19.25532    Cohen's d     -0.9077275    -1.146466    -0.6654795   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    94    30.74468    30.00000    21.21266    2.187919   
##  ────────────────────────────────────────────────────────────────────────────

Regular media / Social media (H30)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A has appeared on the news/media 10 times in 2023 and had 1 million followers on Instagram at the end of 2023. Charity B has appeared on the news/media 30 times in 2023 and has 2000 followers on Instagram at the end of 2023.

H30: Regular media > Social media (>50)

AnalyzeComparison(data, "A20_2allocation", "Regular media / Social media", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower          Upper       
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     1.221168    108.0000    0.2246816           2.293578    Cohen's d      0.1169667    -0.07167819    0.3050726   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    109    52.29358    50.00000    19.60881    1.878184   
##  ─────────────────────────────────────────────────────────────────────────────

Immediate relief vs. root causes (H31)

Charities A and B both address poverty. Charity A aims to address the desperate need for immediate relief. It provides life-saving aid such as food, clean water, medical supplies, and shelter to the villagers. Charity B aims addresses root causes, investing in long-term solutions, such as education programs, agricultural initiatives, and healthcare infrastructure, to support the entire region and break the cycle of poverty.

H31: Immediate relief > Root causes (<50)

AnalyzeComparison(data, "A21_2allocation", "Immediate relief vs. root causes", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    0.7395063    108.0000    0.4612040           1.651376    Cohen's d     0.07083186    -0.1173008    0.2586357   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    109    51.65138    50.00000    23.31403    2.233079   
##  ─────────────────────────────────────────────────────────────────────────────

Local endorsement (H32)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A receives the support and endorsement of the local population. It is unknown who supports and endorses Charity B.

H32: Local endorsement > No endorsement (<50)

AnalyzeComparison(data, "A22_2allocation", "Local endorsement", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -10.19275    108.0000    < .0000001          -22.38532    Cohen's d     -0.9762886    -1.203100    -0.7463557   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    109    27.61468    30.00000    22.92900    2.196200   
##  ─────────────────────────────────────────────────────────────────────────────

Rare vs. Frequent (H33)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A aims to help victims of rare disasters (e.g., strong earthquakes, tsunamis, etc.). Charity B aims to help victims of more frequent disasters (e.g., typhoons, droughts, etc.)

H33: Rare < Frequent (>50)

AnalyzeComparison(data, "A23_2allocation", "Rare vs. Frequent", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     3.996795    116.0000    0.0001132           5.982906    Cohen's d      0.3695038    0.1814370    0.5560771   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    117    55.98291    50.00000    16.19173    1.496926   
##  ─────────────────────────────────────────────────────────────────────────────

H33 (reversed): Rare > Frequent (>50)

(not pre-registered, just for presentation purposes)

Calculating a new reversed variable and rerunning the analysis.

data$A23_2allocation_recorded = 100 - data$A23_2allocation
AnalyzeComparison(data, "A23_2allocation_recorded", "Rare vs. Frequent", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -3.996795    116.0000    0.0001132          -5.982906    Cohen's d     -0.3695038    -0.5560771    -0.1814370   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    117    44.01709    50.00000    16.19173    1.496926   
##  ─────────────────────────────────────────────────────────────────────────────

Familiarity (H34)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is very well known. Charity B is not very well known.

H34: Familiar < Less familiar (<50)

AnalyzeComparison(data, "A24_2allocation", "Familiarity", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -1.150559    108.0000    0.2524548          -2.568807    Cohen's d     -0.1102036    -0.2982539    0.07835570   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    109    47.43119    50.00000    23.30966    2.232660   
##  ─────────────────────────────────────────────────────────────────────────────

Charity age (H35)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A was established in 2023. Charity B was established in 1960.

H35: Older > Newer (>50)

AnalyzeComparison(data, "A25_2allocation", "Charity age", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     4.658227    104.0000    0.0000095           8.476190    Cohen's d      0.4545965    0.2526233    0.6545827   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    105    58.47619    50.00000    18.64553    1.819617   
##  ─────────────────────────────────────────────────────────────────────────────

Shared beliefs 1 (H36)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A aims to help people who share the same beliefs and values as you do. Charity B aims to help people who you know nothing about.

H36: Shared beliefs > No info (<50)

AnalyzeComparison(data, "A26_2allocation", "Shared beliefs 1", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -5.754675    89.00000    0.0000001          -13.33333    Cohen's d     -0.6065960    -0.8300960    -0.3802006   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    90    36.66667    40.00000    21.98058    2.316957   
##  ────────────────────────────────────────────────────────────────────────────

Shared beliefs 2 (H37)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A aims to help people who do not share your beliefs and values. Charity B helps people whose beliefs and values you know nothing about.

H37: No info > No shared beliefs (>50)

(Note: Pre-registation had an oversight, the no-info is charity B and therefore should have been >50 and not <50)

AnalyzeComparison(data, "A27_2allocation", "Shared beliefs 2", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     3.171665    102.0000    0.0020025           7.572816    Cohen's d      0.3125134    0.1139692    0.5095963   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    103    57.57282    50.00000    24.23197    2.387647   
##  ─────────────────────────────────────────────────────────────────────────────

Direct versus indirect cash transfers (H38)

Charity A gives unconditional cash transfers directly to those it has identified and verified as being in need. Charity B transfers funding to a local verified authority that then identifies and verifies those in need and is in charge of the unconditional cash transfers to the recipients.

H38: Indirect > Direct (>50)

AnalyzeComparison(data, "A28_2allocation", "Direct versus indirect cash transfers", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -3.175211    119.0000    0.0019067          -8.666667    Cohen's d     -0.2898558    -0.4719329    -0.1066095   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    120    41.33333    50.00000    29.89993    2.729477   
##  ─────────────────────────────────────────────────────────────────────────────

Single vs. multiple causes (H39)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is solely focused on a single important cause. Charity B addresses three different equally important causes (and equally important as the single cause addressed by Charity A).

H39: multiple > single causes (>50)

AnalyzeComparison(data, "A29_2allocation", "Single vs. multiple causes", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     2.176840    113.0000    0.0315728           5.350877    Cohen's d      0.2038797    0.01796024    0.3889159   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    114    55.35088    50.00000    26.24526    2.458094   
##  ─────────────────────────────────────────────────────────────────────────────

Other donations (H40)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A receives donations from 1000 people every day. Charity B receives donations from 100 people every day.

H40: 1000 > 100 (<50)

AnalyzeComparison(data, "A30_2allocation", "Other donations", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper      
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     8.674683    112.0000    < .0000001           21.32743    Cohen's d      0.8160455    0.6016132    1.027709   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    113    71.32743    80.00000    26.13510    2.458584   
##  ─────────────────────────────────────────────────────────────────────────────

Donation amount (H41)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A receives a certain amount from donations every day. Charity B receives donations 10 times the amount that Charity A receives from donations each day.

H41: 10x > X (>50)

AnalyzeComparison(data, "A31_2allocation", "Donation amount", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -11.07826    94.00000    < .0000001          -27.57895    Cohen's d      -1.136605    -1.393102    -0.8763406   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    95    22.42105    20.00000    24.26432    2.489466   
##  ────────────────────────────────────────────────────────────────────────────

Celebrity endorsement (H42)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is endorsed by a celebrity you recognize. You are unaware of any celebrities endorsing Charity B.

H42: Celebrity endorsement > No celebrity endorsement (<50)

AnalyzeComparison(data, "A32_2allocation", "Celebrity endorsement", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     2.092270    99.00000    0.0389724           4.900000    Cohen's d      0.2092270    0.01056449    0.4068561   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    100    54.90000    50.00000    23.41954    2.341954   
##  ─────────────────────────────────────────────────────────────────────────────

Thank you notes (H43)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A issues all its donors thank-you letters. Charity B does not issue thank-you letters to its donors.

H43: Thank you notes > No thank you notes (<50)

AnalyzeComparison(data, "A33_2allocation", "Thank you notes", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -1.065683    105.0000    0.2890114          -2.452830    Cohen's d     -0.1035083    -0.2941449    0.08761963   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    106    47.54717    50.00000    23.69695    2.301651   
##  ─────────────────────────────────────────────────────────────────────────────

Donor background: Wealthy (H44)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A donations have so far mostly come from wealthy donors. You do not know anything about the wealth of the donors of Charity B.

H44: Wealthy = No info (50; null)

AnalyzeComparison(data, "A34_2allocation", "Donor background: Wealthy", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     4.237118    93.00000    0.0000533           8.297872    Cohen's d      0.4370253    0.2242892    0.6476116   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    94    58.29787    50.00000    18.98717    1.958377   
##  ────────────────────────────────────────────────────────────────────────────

Donor background: Lower class (H45)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A donations have so far mostly come from working-class and lower-class donors. You do not know anything about the wealth of the donors of Charity B.

H45: Lower class = No info (50; null)

AnalyzeComparison(data, "A35_2allocation", "Donor background: Lower class", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -5.355547    107.0000    0.0000005          -10.18519    Cohen's d     -0.5153377    -0.7150825    -0.3134590   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    108    39.81481    50.00000    19.76410    1.901801   
##  ─────────────────────────────────────────────────────────────────────────────

Reputation (H46)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A has been consistently rated as trustworthy by a charity monitor think tank. Charity B has been rated as lower in trustworthiness than Charity A by the same charity monitor think tank.

H46: Reputation > Lower reputation (<50)

AnalyzeComparison(data, "A36_2allocation", "Reputation", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -15.19737    90.00000    < .0000001          -32.52747    Cohen's d      -1.593117    -1.901249    -1.280881   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    91    17.47253    10.00000    20.41750    2.140335   
##  ────────────────────────────────────────────────────────────────────────────

Personal case studies vs. evidence (H47)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A communications focuses on sharing interviews with its donation recipients, detailing recipients’ perspectives on how the donation improved their lives. Charity B communications focuses on sharing evidence, statistics, and facts regarding the impact of its donations.

H47: Personal case studies > evidence (<50)

AnalyzeComparison(data, "A37_2allocation", "Personal case studies vs. evidence", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     2.307044    106.0000    0.0229961           5.046729    Cohen's d      0.2230303    0.03068213    0.4143527   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    107    55.04673    50.00000    22.62799    2.187531   
##  ─────────────────────────────────────────────────────────────────────────────

Refund bonuses (H48)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent) and both aim to crowdfund a certain needed amount of money to execute their missions. Both charities have a refund policy if the fundraising target is unmet. If fundraising target is unmet, Charity A gives a refund bonus, which is additional money in proportion to the donation, in excess of its refund amount. If fundraising target is unmet, Charity B only refunds the amount donated.

H48: Refund bonuses > Regular refund (<50)

AnalyzeComparison(data, "A38_2allocation", "Refund bonuses", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper         
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -2.749098    125.0000    0.0068620          -6.984127    Cohen's d     -0.2449091    -0.4216552    -0.06721215   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    126    43.01587    50.00000    28.51722    2.540516   
##  ─────────────────────────────────────────────────────────────────────────────

Information sharing (H49)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A shares all information about its operations, resource allocation, and activities with its donors, recipients, and the general public. Charity B does not share any information about its operations, resource allocation and activities.

H49: Information sharing > No information sharing (<50)

AnalyzeComparison(data, "A39_2allocation", "Information sharing", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -16.79923    102.0000    < .0000001          -35.72816    Cohen's d      -1.655277    -1.951377    -1.355554   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    103    14.27184    0.000000    21.58440    2.126774   
##  ─────────────────────────────────────────────────────────────────────────────

Share success stories (H50)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A shares success stories and testimonials from beneficiaries on their website and social media platforms. Charity B does not share success stories and testimonials.

H50: Shares success stories > No sharing success stories (<50)

AnalyzeComparison(data, "A40_2allocation", "Share success stories", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -6.422914    100.0000    < .0000001          -15.24752    Cohen's d     -0.6391039    -0.8519164    -0.4236210   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    101    34.75248    40.00000    23.85766    2.373926   
##  ─────────────────────────────────────────────────────────────────────────────

Norms 2 (H51)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). You’ve learned that Charity A has received donations by many others you know in your area (neighborhood, city, etc.). You have no information about who donated to Charity B.

H51: Normative > No info (<50)

AnalyzeComparison(data, "A41_2allocation", "Norms 2", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -5.416853    101.0000    0.0000004          -12.74510    Cohen's d     -0.5363484    -0.7428333    -0.3275327   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    102    37.25490    50.00000    23.76272    2.352860   
##  ─────────────────────────────────────────────────────────────────────────────

Reputation 2 (H52)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is widely recognized in the public domain, with positive reviews, and an accreditation. Charity B is not widely recognized in the public domain with limited reviews and is not accredited. H52: Reputation > No reputation (<50)

AnalyzeComparison(data, "A42_2allocation", "Reputation 2", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -12.31807    97.00000    < .0000001          -28.06122    Cohen's d      -1.244313    -1.506597    -0.9783027   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    98    21.93878    20.00000    22.55157    2.278053   
##  ────────────────────────────────────────────────────────────────────────────

Advertisements (H53)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A uses compelling and visually stimulating advertisements emphasizing the distressing situations of the donation targets. Charity B does not make use of advertisements to promote their cause.

H53: Advertisements > No advertisements (<50)

AnalyzeComparison(data, "A43_2allocation", "advertisements", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     2.364189    124.0000    0.0196226           5.680000    Cohen's d      0.2114595    0.03377739    0.3883081   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    125    55.68000    50.00000    26.86093    2.402515   
##  ─────────────────────────────────────────────────────────────────────────────

Matching (H54)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Donations to Charity A are matched by donations of the same amount from a third party. Donations to Charity B are not matched by a third party.

H54: Matching > No matching (<50)

AnalyzeComparison(data, "A44_2allocation", "Matching", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -7.707944    96.00000    < .0000001          -23.81443    Cohen's d     -0.7826231    -1.008696    -0.5533952   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    97    26.18557    20.00000    30.42899    3.089596   
##  ────────────────────────────────────────────────────────────────────────────

Attention (H55)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A focuses on an issue that is widely covered in world news and media. Charity B focuses on an issue that does not receive much attention from world news and media. You personally deem the two issues to be equally important.

H55: Attention > Less attention (<50)

AnalyzeComparison(data, "A45_2allocation", "Attention", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     3.272433    92.00000    0.0015024           7.419355    Cohen's d      0.3393355    0.1294097    0.5475165   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    93    57.41935    50.00000    21.86437    2.267229   
##  ────────────────────────────────────────────────────────────────────────────

Planting trees vs. Supporting local communities (H56)

Charities A and B both focus on environmental conservation and combating deforestation in the Amazon rain-forest. Charity A plants a large number of native tree species within a designated region of the Amazon rain-forest. Charity B works closely with local indigenous communities within the rain-forest, providing support for sustainable livelihoods.

H56: Supporting local communities > Planting trees (<50)

AnalyzeComparison(data, "A46_2allocation", "Planting trees vs. Supporting local communities", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower          Upper       
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     1.993129    138.0000    0.0482193           4.244604    Cohen's d      0.1690550    0.001322005    0.3361851   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    139    54.24460    50.00000    25.10784    2.129619   
##  ─────────────────────────────────────────────────────────────────────────────

Receipient effort (H57)

Charities A and B both combat poverty with the same effectiveness (lives helped per dollar spent). Charity A focuses on helping those who have shown themselves to make an effort and have invested much hard work in bettering their own conditions and trying to lift themselves out of poverty. Charity B helps all those identified and verified to be in need.

H57: Effort > All (<50)

AnalyzeComparison(data, "A47_2allocation", "Receipient effort", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                        
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper          
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -2.009827    108.0000    0.0469428          -5.137615    Cohen's d     -0.1925065    -0.3815430    -0.002596244   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    109    44.86239    50.00000    26.68800    2.556247   
##  ─────────────────────────────────────────────────────────────────────────────

Recipient details (H58)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A shares with donors details of those helped by their donation (name, photo, conditions, etc.). Charity B does not provide donors with any specific information about those helped by their donations.

H58: Recipient details > No recipient details (<50)

AnalyzeComparison(data, "A48_2allocation", "Recipient details", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper         
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -2.980440    103.0000    0.0035913          -8.173077    Cohen's d     -0.2922561    -0.4878538    -0.09529790   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    104    41.82692    50.00000    27.96546    2.742239   
##  ─────────────────────────────────────────────────────────────────────────────

Religious affiliation (H59)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is affiliated with a religious institution. Charity B is not affiliated with a religious institution.

H59: Religious affiliation > No religious affiliation (<50)

(Note: the pre-registration indicated “>50”, althought the hypothesis was for religious > not religious and Charity A having religious affiliation and B without. This was an oversight, and corrected here to “<50”)

AnalyzeComparison(data, "A49_2allocation", "Religious affiliation", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     7.163684    100.0000    < .0000001           19.50495    Cohen's d      0.7128132    0.4928186    0.9299397   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    101    69.50495    70.00000    27.36334    2.722754   
##  ─────────────────────────────────────────────────────────────────────────────

Personal experience (H60)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A supports a cause that you have had some personal experience with. Charity B supports a cause that you have not had any personal experience with.

H60: Personal experience > No personal experience (<50)

AnalyzeComparison(data, "A50_2allocation", "Personal experience", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -13.40219    106.0000    < .0000001          -22.42991    Cohen's d      -1.295639    -1.551296    -1.036542   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    107    27.57009    30.00000    17.31185    1.673600   
##  ─────────────────────────────────────────────────────────────────────────────

Law risky (H61)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A operates in a country with strict laws against non-local charities and is constantly facing risks of a crackdown by the local government. Charity B operates in a country that is less strict about non-local charities and is facing lower risks of a crackdown on by the local government. Both countries have millions of people in dire need of help and are at risk of dying if not helped. In both countries, people in need are not helped by their local governments.

H61: Law risky > Less law risky (>50)

AnalyzeComparison(data, "A51_2allocation", "Law risky", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    0.3649164    99.00000    0.7159522          0.9000000    Cohen's d     0.03649164    -0.1596636    0.2324594   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    100    50.90000    50.00000    24.66319    2.466319   
##  ─────────────────────────────────────────────────────────────────────────────

Local government funding (H62)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A receives substantial funding support from the local government on top of the funding from private donors. Charity B receives no funding support from the local government, meaning that all funding comes from private donors.

H62: Local government funding > No local government funding (<50)

(Note: the pre-registration had a mistake indicating “>50”, yet according to the scenario A is local funding and B is no local funding and therefore this should have been <50. Corrected here. Should be noted as a deviation)

AnalyzeComparison(data, "A52_2allocation", "Local government funding", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     6.323812    104.0000    < .0000001           17.90476    Cohen's d      0.6171409    0.4070748    0.8246977   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    105    67.90476    70.00000    29.01244    2.831324   
##  ─────────────────────────────────────────────────────────────────────────────

Operational (H63)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is already operational and so funding will be used immediately. Charity B has everything in place to begin working and has already received approval that would allow it to begin operations in a year.

H63: Operational > Not yet operational (<50)

AnalyzeComparison(data, "A53_2allocation", "Operational", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -6.344646    104.0000    < .0000001          -15.04762    Cohen's d     -0.6191740    -0.8268389    -0.4089944   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    105    34.95238    40.00000    24.30273    2.371704   
##  ─────────────────────────────────────────────────────────────────────────────

Remedy vs. Preventive (H64r)

Charities A and B both focus on flood damage and are of similar effectiveness (lives saved per dollar spent). Charity A focuses on preventive measures to prevent floods from happening. Charity B focuses on remedy measures to address floods when they happen.

H64: Remedy > Preventive (>50) (Reverse)

Recoded to H64r: Remedy > Preventive (<50)

data$A54_2allocation_recoded <- 100- data$A54_2allocation

AnalyzeComparison(data, "A54_2allocation_recoded", "Remedy vs. Preventive", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                    
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower        Upper       
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     5.155268    100.0000    0.0000013           10.99010    Cohen's d      0.5129684    0.3042833    0.7193783   
##  ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    101    60.99010    50.00000    21.42452    2.131819   
##  ─────────────────────────────────────────────────────────────────────────────

Lottery vs. First come (H65)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent) using unconditional cash transfers. Charity A allocates money using a random lottery among all identified and verified victims. Charity B allocates money using a first-come-first-served for all identified and verified victims.

H65: Lottery > First come (<50)

AnalyzeComparison(data, "A55_2allocation", "Lottery vs. First come", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     2.294798    117.0000    0.0235274           6.101695    Cohen's d      0.2112533    0.02836785    0.3932562   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    118    56.10169    50.00000    28.88332    2.658925   
##  ─────────────────────────────────────────────────────────────────────────────

US region vs. not in region (H66)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A focuses on victims in countries located in the region of your home country (though not including your own country). Charity B focuses on victims from countries that are far from the region of your home country.

H66: Proximate > Distant (<50)

AnalyzeComparison(data, "A56_2allocation", "US region vs. not in region", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -5.977463    104.0000    < .0000001          -13.33333    Cohen's d     -0.5833406    -0.7891502    -0.3751223   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    105    36.66667    50.00000    22.85686    2.230601   
##  ─────────────────────────────────────────────────────────────────────────────

Minorities vs. all (H67)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A focuses on helping victims from ethnic minorities in your community. Charity B focuses on victims in general, of all ethnicities.

H67: All > Minorities (>50)

AnalyzeComparison(data, "A57_2allocation", "Minorities vs. all", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     2.840370    98.00000    0.0054806           7.575758    Cohen's d      0.2854679    0.08378175    0.4857561   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    99    57.57576    50.00000    26.53803    2.667173   
##  ────────────────────────────────────────────────────────────────────────────

Train vs. Planes with offsets (H68)

Charities A and B are both focused on environmental protection with the same effectiveness (same estimated amount of carbon emissions reduced). Charity A employees travel to conferences by trains. Charity B employees fly by planes, yet offset their carbon emissions footprint by planting trees.

H68: Train > Planes offsets (<50)

AnalyzeComparison(data, "A58_2allocation", "Train vs. Planes with offsets", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper         
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -2.842937    98.00000    0.0054401          -7.474747    Cohen's d     -0.2857259    -0.4860212    -0.08403203   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    99    42.52525    50.00000    26.16055    2.629234   
##  ────────────────────────────────────────────────────────────────────────────

Familiarity 2 (H69)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is well-known and receives more donations. Charity B is lesser-known and receives fewer donations.

H69: Familiar > Less familiar (<50)

AnalyzeComparison(data, "A59_2allocation", "Familiarity 2", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     8.266306    121.0000    < .0000001           18.77049    Cohen's d      0.7483962    0.5462774    0.9480717   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    122    68.77049    70.00000    25.08096    2.270723   
##  ─────────────────────────────────────────────────────────────────────────────

Temporal proximity (H70)

Charity A supports education for one year for 10,000 African children set to take place in the upcoming year. Charity B supports education for one year for 10,000 African children, set to take place in five years time.

H70: Proximate > Distant (<50)

AnalyzeComparison(data, "A60_2allocation", "Temporal proximity", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -13.15617    105.0000    < .0000001          -28.11321    Cohen's d      -1.277840    -1.533080    -1.019136   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    106    21.88679    20.00000    22.00057    2.136884   
##  ─────────────────────────────────────────────────────────────────────────────

Matching vs. refund (H71)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A pledges to match your donation. For example, when you donate X dollars, a foundation which cooperates with Charity A will also donate X dollars. Charity B cooperates with another foundation. If you donate X dollars to Charity B, then that foundation will refund you half the amount of your donation (X divided by 2).

H71: Matching > refund (<50)

AnalyzeComparison(data, "A61_2allocation", "Matching vs. refund", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -8.349097    112.0000    < .0000001          -21.76991    Cohen's d     -0.7854170    -0.9951303    -0.5729911   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    113    28.23009    30.00000    27.71765    2.607457   
##  ─────────────────────────────────────────────────────────────────────────────

Execution time (H72)

Charity A vaccinates 10 children within one month for $1,000. Charity B vaccinates 20 children within 2 months for $2000. Imagine you have $20,000 to allocate between the two charities.

H72: Sooner > Later (<50)

AnalyzeComparison(data, "A62_2allocation", "Execution time", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic     df          p            Mean difference                 Effect Size    Lower         Upper       
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -0.6576037    122.0000    0.5120316          -1.056911    Cohen's d    -0.05929413    -0.2360539    0.1177057   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    123    48.94309    50.00000    17.82488    1.607215   
##  ─────────────────────────────────────────────────────────────────────────────

Level of sharing (H73)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A posts an annual report detailing its donation goals, work goals, and collaboration goals, whether these have been reached, and plans on how to improve (if goals have failed), on top of reports about its impact and events. Charity B posts an annual report about its impact and events.

H73: High sharing > Low sharing (<50)

AnalyzeComparison(data, "A63_2allocation", "Level of sharing", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -8.368341    110.0000    < .0000001          -18.73874    Cohen's d     -0.7942878    -1.006436    -0.5793604   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    111    31.26126    40.00000    23.59188    2.239242   
##  ─────────────────────────────────────────────────────────────────────────────

Side effects (H74)

Charity A focuses on providing a well-tested vaccination with 95% effectiveness to prevent the certain deaths of 95 out of every 100 people. However, the vaccination may cause 5 of 100 of those vaccinated to die from side-effects. Charity B focuses on providing an equally well-tested vaccination that has 90% effectiveness to prevent the certain deaths of 90 out of every 100 people, yet has no documented risk of death from side-effects.

(was intended as related to omission bias using a similar concept, but there is no action-inaction here)

H74: No side-effects > Side-effect (>50)

AnalyzeComparison(data, "A64_2allocation", "Side effects", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     7.663607    102.0000    < .0000001           21.35922    Cohen's d      0.7551177    0.5345592    0.9727653   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    103    71.35922    80.00000    28.28595    2.787098   
##  ─────────────────────────────────────────────────────────────────────────────

Sharing previous donors (H75)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A provides information regarding the typical donation amounts by previous donors (without further details), and will include your donation information in future donations. Charity B does not provide any information regarding past donations.

H75a: No sharing > Sharing (>50) (People prefer anonymity) H75b: Sharing > No sharing (<50) (People prefer transparency)

AnalyzeComparison(data, "A65_2allocation", "Sharing previous donors", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -1.036784    94.00000    0.3024963          -3.052632    Cohen's d     -0.1063718    -0.3077514    0.09556975   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    95    46.94737    50.00000    28.69775    2.944327   
##  ────────────────────────────────────────────────────────────────────────────

Designation (H76)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A has already identified children in need and a waiting list of children that are to be helped. Charity B only proceeds to identify the children in need and support them upon securing the donation.

H76: Designated > Not designated (<50)

AnalyzeComparison(data, "A66_2allocation", "Designation", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -7.746144    94.00000    < .0000001          -18.73684    Cohen's d     -0.7947376    -1.023996    -0.5622295   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    95    31.26316    30.00000    23.57614    2.418861   
##  ────────────────────────────────────────────────────────────────────────────

Sharing on social media (H77)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A posts its impact, accomplishments, and progress on social media regularly. Charity B does not post any information on social media.

H77: Sharing > Not sharing (<50)

AnalyzeComparison(data, "A67_2allocation", "Sharing on social media", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -4.410489    110.0000    0.0000241          -10.72072    Cohen's d     -0.4186250    -0.6118120    -0.2236842   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    111    39.27928    40.00000    25.60936    2.430733   
##  ─────────────────────────────────────────────────────────────────────────────

Friends donated (H78)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). You’ve learned that your friends have previously donated to Charity A. You do not know whether your friends donated to Charity B.

H78: Friends donated > No info (<50)

AnalyzeComparison(data, "A68_2allocation", "Friends donated", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -3.156821    116.0000    0.0020328          -4.358974    Cohen's d     -0.2918482    -0.4762857    -0.1062036   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    117    45.64103    50.00000    14.93576    1.380811   
##  ─────────────────────────────────────────────────────────────────────────────

Giving multiplier (H79)

Charities A and B both address a social issue that is personally and emotionally appealing to you. Charity A leverages 100% of your donation to tackle a social issue that you care about. Charity B leverages 50% of your donation to tackle the social issue that you care about; remaining 50% is to other projects with guaranteed higher cost-effectiveness but is not particularly appealing to you, yet is matched by donations of another donor, for every dollar of the 50% of your donations, an external donor puts in another dollar.

H79: Giving multiplier with matching > Regular (>50)

AnalyzeComparison(data, "A69_2allocation", "Giving multiplier", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -5.389185    113.0000    0.0000004          -15.78947    Cohen's d     -0.5047434    -0.6987308    -0.3087672   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    114    34.21053    30.00000    31.28218    2.929845   
##  ─────────────────────────────────────────────────────────────────────────────

Recepients’ mood presentation (H80)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A tends to present those they aim to support as being happy and joyful. Charity B tends to present those they aim to support as being sad and miserable.

H80a: Happy and joyful > Sad and miserable (<50) (more relatedness) H80b: Happy and joyful < Sad and miserable (>50) (more empathy)

AnalyzeComparison(data, "A70_2allocation", "Recepients' mood presentation", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -1.150677    101.0000    0.2525820          -2.745098    Cohen's d     -0.1139340    -0.3083530    0.08104705   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    102    47.25490    50.00000    24.09375    2.385636   
##  ─────────────────────────────────────────────────────────────────────────────

Diversification: Single vs multiple treatments (H81)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A is solely focused on a single treatment. Charity B employs three different equally effective treatments (and equally effective as the single treatment used by Charity A).

H81: Multiple treatments (diversification) > Single treatment (>50)

AnalyzeComparison(data, "A71_2allocation", "Diversification: Single vs multiple treatments", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     6.011184    111.0000    < .0000001           11.51786    Cohen's d      0.5680035    0.3672244    0.7665702   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    112    61.51786    55.00000    20.27779    1.916071   
##  ─────────────────────────────────────────────────────────────────────────────

Local US community vs. Africa (H82)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent) by supporting poor families. Charity A supports poor families in the local community. Charity B supports poor families in Africa.

H82: Ingroup > Outgroup (<50)

AnalyzeComparison(data, "A72_2allocation", "Local US community vs. Africa", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -7.805952    100.0000    < .0000001          -19.80198    Cohen's d     -0.7767212    -0.9979059    -0.5525195   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    101    30.19802    30.00000    25.49432    2.536780   
##  ─────────────────────────────────────────────────────────────────────────────

Infrastructures vs. direct unconditional cash transfers (H83)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent) by supporting poor farmers in Africa. Charity A supports the farmers by investing in their infrastructure (water, electricity, roads, etc.), which indirectly help all farmers. Charity B provides support directly to the farmers in the form of unconditional cash transfers.

H83: Infrastructures > direct unconditional cash transfers (<50)

AnalyzeComparison(data, "A73_2allocation", "Infrastructures vs. direct unconditional cash transfers", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -4.194184    92.00000    0.0000630          -12.58065    Cohen's d     -0.4349167    -0.6465445    -0.2211275   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    93    37.41935    40.00000    28.92656    2.999545   
##  ────────────────────────────────────────────────────────────────────────────

Direct vs indirect unconditional cash transfers (H84)

Charities A and B both help those identified and verified as being in need in Africa using unconditional cash transfers. Charity A transfers money to recipients using cash money handed by a local charity representative. Charity B transfers money directly to recipients through mobile phone money transfers (supported by all mobile phones in their region, and all recipients already have mobile phones and stable mobile connectivity).

H84: Indirect > direct unconditional cash transfers (<50)

AnalyzeComparison(data, "A74_2allocation", "Direct vs indirect unconditional cash transfers", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    0.2533880    105.0000    0.8004639          0.7547170    Cohen's d     0.02461121    -0.1658450    0.2149503   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    106    50.75472    50.00000    30.66557    2.978504   
##  ─────────────────────────────────────────────────────────────────────────────

Based in US vs. foreign (H85r)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A was founded at and is based in a foreign country. Charity B was founded at and is based in your home country.

H85: Ingroup > Outgroup (>50) (Reverse) Recoded to H85r: Ingroup > Outgroup (<50)

(Note: Reversed item from pre-registration, to align with other ingroup-outgroup comparisons)

data$A75_2allocation_recorded <- 100 - data$A75_2allocation

AnalyzeComparison(data, "A75_2allocation_recorded", "Based in US vs. foreign", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower         Upper        
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -6.312667    102.0000    < .0000001          -14.85437    Cohen's d     -0.6220055    -0.8318191    -0.4096179   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    103    35.14563    40.00000    23.88141    2.353105   
##  ─────────────────────────────────────────────────────────────────────────────

Experts vs RCTs (H86)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A bases their interventions on the recommendations of a think-tank of leading experts in the field. Charity B bases their interventions on the latest scientific information using Randomized Controlled Trials.

H86: Experts > RCTs (<50)

AnalyzeComparison(data, "A76_2allocation", "Experts vs RCTs", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t     2.315602    118.0000    0.0223072           5.042017    Cohen's d      0.2122709    0.03013618    0.3935265   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    119    55.04202    50.00000    23.75275    2.177411   
##  ─────────────────────────────────────────────────────────────────────────────

Sharing on each donation vs. aggregate (H87)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). Charity A provides detailed information regarding how each and every donation helped their cause. Charity B provides aggregated statistical summaries of the impact of all donations combined.

H87: Sharing on each donation > aggregate (<50)

AnalyzeComparison(data, "A77_2allocation", "Sharing on each donation vs. aggregate", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -5.203880    117.0000    0.0000008          -11.01695    Cohen's d     -0.4790560    -0.6686981    -0.2875714   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    118    38.98305    50.00000    22.99721    2.117064   
##  ─────────────────────────────────────────────────────────────────────────────

Proportion 2: Specific communities (H88)

Charities A and B both aim to save lives in specific communities. Charity A focuses on a community of 100,000 and for each $1,000 can help 1,000 of the 100,000. Charity B focuses on a community of 1,000,000 (1 million) and for each $1,000 can help 1,000 of the 1,000,000. Imagine that you have $10,000 to allocate between the two charities.

H88: High proportion (Smaller camp) > Low proportion (Larger camp) (<50)

(Note: see also H26, we kept them both)

AnalyzeComparison(data, "A78_2allocation", "Proportion 2: Specific communities", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                       
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper         
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -2.291746    91.00000    0.0242274          -5.434783    Cohen's d     -0.2389311    -0.4455533    -0.03103331   
##  ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    92    44.56522    50.00000    22.74624    2.371459   
##  ────────────────────────────────────────────────────────────────────────────

Short vs. long term (H89)

Charities A and B both save the same number of people who lack access to sufficient food. Per each $1,000 spent, Charity A provides relief for 5 people who are currently experiencing food shortage. Per each $1,000 spent, Charity B can ensure that overall 5 fewer people who would face food shortages in the long term.

H89: Long term > Short term (>50)

AnalyzeComparison(data, "A79_2allocation", "Short vs. long term", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -1.850514    122.0000    0.0666586          -3.658537    Cohen's d     -0.1668552    -0.3444754    0.01143914   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    123    46.34146    50.00000    21.92642    1.977038   
##  ─────────────────────────────────────────────────────────────────────────────

Membership (ingroup) (H90)

Charities A and B both save lives with the same effectiveness (lives saved per dollar spent). You are registered as a member in Charity A. You are not registered as a member in Charity B.

H90: Member > Not a member (<50)

AnalyzeComparison(data, "A80_2allocation", "Membership (ingroup)", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                      
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p             Mean difference                 Effect Size    Lower        Upper        
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    -11.26781    111.0000    < .0000001          -24.19643    Cohen's d      -1.064708    -1.295235    -0.8310464   
##  ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                  
##  ───────────────────────────────────────────────────────────────────────────── 
##                          N      Mean        Median      SD          SE         
##  ───────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    112    25.80357    20.00000    22.72588    2.147394   
##  ─────────────────────────────────────────────────────────────────────────────

Advocating personal responsibility (H91)

Charities A and B have the same effectiveness in addressing the cause of global warming. Charity A emphasizes that fighting global warming is your own personal responsibility. Charity B does not address the topic of personal responsibility.

H91: Not advocating personal responsibility > Advocating personal responsibility (>50)

AnalyzeComparison(data, "A81_2allocation", "Advocating personal responsibility", 50)
## 
##  ONE SAMPLE T-TEST
## 
##  One Sample T-Test                                                                                                                                     
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##                                         Statistic    df          p            Mean difference                 Effect Size    Lower         Upper       
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    Student's t    0.4239403    90.00000    0.6726209           1.318681    Cohen's d     0.04444102    -0.1612421    0.2498806   
##  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 
##    Note. Hₐ μ ≠ 50
## 
## 
##  Descriptives                                                                 
##  ──────────────────────────────────────────────────────────────────────────── 
##                          N     Mean        Median      SD          SE         
##  ──────────────────────────────────────────────────────────────────────────── 
##    dataset..VarName..    91    51.31868    50.00000    29.67261    3.110535   
##  ────────────────────────────────────────────────────────────────────────────

Exploratoy grouping (CAUTION)

CAUTION: Given that participants answered 23 out of 104 items, trying to do comparisons between the singular scenarios results in very small Ns, and not powered enough, this is added here for demonstration purposes only. DO NOT USE.

(Exploratory: Not pre-registered) Added comparisons and grouping between the individual scenarios, after some groups pointed out links between the different scenarios.

Ingroup-outgroup: Comparing H27, H66, H82, H85r

# 
# jmv::anovaRM(
#     data = data,
#     rm = list(
#         list(
#             label="Ingroup-outgroup",
#             levels=c(
#                 "US vs. Africa",
#                 "US region vs. not in region",
#                 "Local US community vs. Africa",
#                 "Based in US vs. foreign"))),
#     rmCells = list(
#         list(
#             measure="A17_2allocation",
#             cell="US vs. Africa"),
#         list(
#             measure="A56_2allocation",
#             cell="US region vs. not in region"),
#         list(
#             measure="A72_2allocation",
#             cell="Local US community vs. Africa"),
#         list(
#             measure="A75_2allocation_recorded",
#             cell="Based in US vs. foreign")),
#     effectSize = c("eta", "partEta"),
#     depLabel = "% allocation to B",
#     rmTerms = ~ `Ingroup-outgroup`,
#     postHoc = list(
#         "Ingroup-outgroup"),
#     emMeans = ~ `Ingroup-outgroup`,
#     emmTables = TRUE,
#     emmPlotData = TRUE,
#     groupSumm = TRUE)


# data_ingroup <- data.frame(data$A17_2allocation,
#                             data$A56_2allocation,
#                            data$A72_2allocation,
#                            data$A75_2allocation_recorded)
# colnames(data_ingroup) <- c("US vs. Africa",
#                             "US region vs. not in region", 
#                             "Local US community vs. Africa",
#                             "Based in US vs. foreign")
# data_ingroup_mod <- melt(data_ingroup)
# data_ingroup_mod <- data.frame(data_ingroup_mod)
# data_ingroup_mod <- na.omit(data_ingroup_mod)
# data_ingroup_mod <- remove_labels(data_ingroup_mod)
# 
# ggwithinstats(
#   data = data_ingroup_mod,
#   x = variable,
#   y = value,
#   xlab = "US (local) vs. Not US",
#   ylab = "% allocation to B",
#   plot.type = "boxviolin",
#   title = "Ingroup-outgroup: Comparing all conditions",
#   point.args = list(size = 3, alpha = 0.2, position =
#                       ggplot2::position_jitterdodge(jitter.width = 0.4,
#                                                     jitter.height = 3)),
#   ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
#   type = "parametric"
# )

Approach

# jmv::anovaRM(
#     data = data,
#     rm = list(
#         list(
#             label="Approach",
#             levels=c(
#                 "Treatment vs. Preventive",
#                 "Immediate relief vs. root causes",
#                 "Remedy vs. Preventive"))),
#     rmCells = list(
#         list(
#             measure="A4_2allocation",
#             cell="Treatment vs. Preventive"),
#         list(
#             measure="A21_2allocation",
#             cell="Immediate relief vs. root causes"),
#         list(
#             measure="A54_2allocation_recoded",
#             cell="Remedy vs. Preventive")),
#     effectSize = c("eta", "partEta"),
#     depLabel = "% allocation to B",
#     rmTerms = ~ Approach,
#     postHoc = list(
#         "Approach"),
#     emMeans = ~ Approach,
#     emmTables = TRUE,
#     emmPlotData = TRUE,
#     groupSumm = TRUE)

# data_approach <- data.frame(data$A4_2allocation,
#                            data$A21_2allocation,
#                            data$A54_2allocation_recoded)
# colnames(data_approach) <- c("Treatment vs. Preventive",
#                             "Immediate relief vs. root causes",
#                             "Remedy vs. Preventive")
# data_approach_mod <- melt(data_approach)
# data_approach_mod <- data.frame(data_approach_mod)
# data_approach_mod <- na.omit(data_approach_mod)
# data_approach_mod <- remove_labels(data_approach_mod)
# 
# ggwithinstats(
#   data = data_approach_mod,
#   x = variable,
#   y = value,
#   xlab = "Approach",
#   ylab = "% allocation to B",
#   plot.type = "boxviolin",
#   title = "Approach: Comparing all conditions",
#   point.args = list(size = 3, alpha = 0.2, position =
#                       ggplot2::position_jitterdodge(jitter.width = 0.4,
#                                                     jitter.height = 3)),
#   ggplot.component = ggplot2::scale_y_continuous(breaks = seq(0,100,10)),
#   type = "parametric"
# )

Others to be combined in future data collection

Group: Shared beliefs 1 (H36) Shared beliefs 2 (H37)

INFO: Environment and packages used

print("R version:")
## [1] "R version:"
version$version.string
## [1] "R version 4.2.1 (2022-06-23 ucrt)"
print("Rstudio version:")
## [1] "Rstudio version:"
rstudioversion <- rstudioapi::versionInfo()
rstudioversion$version
## [1] '2023.6.0.421'
print("Citations for packages used:")
## [1] "Citations for packages used:"
grateful::cite_packages(output = "table", out.format = "Rmd", out.dir = tempdir())
##        Package Version                                       Citation
## 1         base   4.2.1                                          @base
## 2 DataExplorer   0.8.2                                  @DataExplorer
## 3          jmv   2.3.4                                           @jmv
## 4        knitr    1.43             @knitr2014; @knitr2015; @knitr2023
## 5    rmarkdown    2.23 @rmarkdown2018; @rmarkdown2020; @rmarkdown2023
## 6   rmdformats   1.0.4                                    @rmdformats
## 7    tidyverse   2.0.0                                     @tidyverse